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ABSTRACT 
 
The current status of the prediction methods of 
membrane proteins in the post-genomic era is 
described. In the first section, prediction 
methods of transmembrane segments in 
proteins are considered, including the TSEG 
program, which we have recently developed. 
Several prediction methods for the tertiary 
structure of membrane proteins are also 
mentioned. Finally, we show the unique feature 
of the distribution of membrane proteins in a 
genome. Our prediction of the function of 
several membrane proteins is also shown. 
 
INTRODUCTION 
 
The beginning of the scientific research of this 
century is characterized by the report that the 
human genome sequencing project has been 
completed [1,2]. Beyond the human genome, a 
surge of world-wide genome projects in the last 
decade have been producing complete genome 
sequences of an increasing number of 
organisms. At this point (February 2001), 
complete genome sequences of 48 organisms 
are available in the KEGG database [3], which 
is a compilation of genome sequences and 
pathways we have been maintaining on the web. 
Complete genome sequences enable a 
comprehensive study of proteins or organisms 
through a catalog of proteomes, e.g., dynamic 
genome rearrangement of a pair of closely 
related organisms [4,5], the spread and 
evolution of a particular protein family among 
organisms [6,7], and physical principles of how 
related genes are encoded in the genome [8,9]. 
In this post-genomic era, every computational 
structure/function prediction method should 
take into account its application to genome 
sequences. 
 Throughout this manuscript, trans-
membrane (TM) protein is meant by membrane 

protein. Membrane proteins have important 
roles in living cells, such as transport, energy 
production, cell signaling and cell adhesion. In 
the genomic context, membrane proteins have 
attracted more attention, because they discussed 
that in microbial genomes, the distribution of 
transporters, one of the major members of the 
membrane protein family, reflects the 
environment that each organism inhabits 
[10,11]. 
 We begin this text by reviewing the 
prediction methods of TM segments in proteins, 
which are also used in detecting TM proteins in 
genome sequences. The prediction of TM 
segments is also a starting point of the tertiary 
structure prediction of a membrane protein. 
Here, we describe the TSEG program, which 
we have developed recently. The proper way to 
measure the performance of prediction methods 
is also mentioned. Next, methods for predicting 
the tertiary structure of TM proteins are 
reviewed. Currently, tertiary structures of only 
a few TM proteins are solved by experimental 
methods, and most of them have helical TM 
segments. Limiting the objects of prediction to 
those proteins with helical TM segments 
(exceptions at this point are porin, which has β-
barrel structure [12] and bacterial toxin proteins 
which penetrate into membranes and form 
membrane pores [13-16]), this prediction 
procedure can be simplified to the assembly of 
semi-rigid helical rods. In a later section, we 
show a genome sequence analysis in terms of 
membrane proteins. The membrane protein 
content of a genome, and their physical 
distribution in a genome is the main issue here. 
We have also made predictions for the 
functions of membrane proteins based on the 
observations. 
 
1. Prediction Methods of Transmembrane 
Segments 
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The TM segment prediction method originates 
from the hydropathy plot by Kyte & Doolittle 
(1982) [17]. The idea is rather simple: 
recognizing highly hydrophobic stretches in the 
sequence as TM segments using a sliding 
window of a certain length (7-21 amino acids). 
Another important contribution of this paper is 
the derivation of the hydrophobicity index of 
amino acids, which is still commonly used. It 
was derived from water-vapor transfer free 
energies [18-20] and interior-exterior 
distribution of amino acids [21].  Various 
improvements have been performed on the 
hydropathy analysis since then: taking 
amphiphilicity of TM helices into account [22, 
23], using different or various hydrophobicity 
indices [24,25], employing discriminant 
analysis [26]. Hydropathy-type methods can be 
generalized as follows: given a hydrophobicity 
index ft for each amino acid type t, weights hn 
for the position n in the sliding window and a 
threshold B which is constant: 
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where M(j,m-n) = fp(j,m-n), and p(j,m) denotes the 
residue type at position m in chain j. Lj is the 
length of the chain j. The position m in chain j 
is decided to be transmembrane if D(j,m) > 0. 
Treating ft and hn as variables, Edelman [27] 
derived their optimal values by minimizing the 
following quadratic equation S (which 
corresponds to minimizing prediction errors): 
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Here, q(j,m) = 1 when (j,m) in the training set is 
transmembrane, otherwise q(j,m) = 0. 
 It has been observed that not only the 
inside of TM segments but also their flanking 
regions have preferable amino acids, e.g. 
aromatic residues [28,29]. One can utilize the 

amino acid propensity to construct prediction 
methods [30-32]. Using the Neural network is 
another promising approach to these kinds of 
two-dimensional structure predictions [33-35]. 
Using multiple sequence alignments helps 
improving prediction accuracy [30,31,34,35].  
Kroth et al. applied a hidden Markov model 
[36,37].  
 The topology of membrane proteins can 
be derived from some biochemical 
experimental evidence, even if their tertiary 
structures are not solved [38-40]. But it is often 
the case that contradictory results are suggested 
by other experiments. If one also considers that 
any prediction method has limited accuracy, it 
is optimal for a prediction method to output not 
a single prediction but a list of possibilities with 
certainty measures, so that further experiments 
can be designed to distinguish among several 
topology models. Jones et al. [32] elegantly 
applied a dynamic programming algorithm for 
this purpose. TopPred II by von Heijne [41] 
ranks several topology models according to the 
‘positive-inside rule’ (see below, in Topology 
Prediction section). We also mention here that 
neural network-based and hidden Markov 
model-based methods can assign reliability 
index to the predictions made for each residue. 
 
TSEG program 
 
In this section, we describe TSEG, which we 
have developed recently. When annotating 
biological functions of genes in a genome, the 
prediction of higher order structures can be 
used in order to compensate for the limitation 
of the conventional sequence similarity search 
[42-44]. This is especially true for membrane 
proteins, since the number of TM segments in a 
protein can be related to a functional subclass 
in some cases, such as seven-TM receptors or 
six-TM transporters. One of the objectives of 
developing the Transmembrane SEGment 
prediction program [45] was to enhance the 
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functional identification of TM proteins. To 
capture detailed properties of TM segments, 
our method is based on a classification of TM 
segments in a database. In fact, not all TM 
segments are equally hydrophobic. For example, 
TM segments of single spanning TM proteins 
are known to be highly hydrophobic and have 
less amphiphilicity [22], whereas the last TM 
segments in seven-TM proteins are relatively 
less hydrophobic and often difficult to detect by 
prediction methods [30,32]. Thus, we have 
classified TM segments first by the total 
number of TM segments in a protein and the 
order in which they appear in the protein 
sequence, and at last merged similar ones into 
the same group. The second feature is that the 
TSEG enumerates possible models as ranked 
by their scores, where a model is distinguished 
by the number of TM segments in a protein and 
represented by the order of different groups 
(types) of TM segments. A model of globular 
proteins is included as well. 
  We have classified TM segments into 
five groups according to their average hydro-
phobicity and amphiphilicity (or AP value), 
using the Mahalanobis distance of the linear 
discriminant analysis [46]. The dataset of 2876 
non-redundant TM protein sequences used here 
was extracted from Swiss-Prot rel. 34.0 [47]. 
The AP value is defined as follows: 
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Hi is the hydrophobicity index [17] given to 
each amino acid, N is the length of the TM 

segment, and ω is the angle in degrees. Figure 1 
is the model of the membrane protein used in 
the prediction, according to the locations of the 
five groups of TM segments. Here, membrane 
proteins with more than fourteen TM segments 
are excluded because there were not enough 
sequences in the database to execute statistical 
calculations. The most hydrophobic group, 
group1, appears only in the single spanning 
membrane proteins. Group2, which has 
relatively high hydrophobicity, appears at the 
N-terminal TM segments in most of the 
membrane protein classes (except for the 12TM 
proteins). It is possible that these TM segments 
are involved in the initiation of membrane 
insertion, which may correspond to what 
Eisenberg et al. [22] called ‘initiators’. The last 
segment of the seven TM proteins belongs to 
the least hydrophobic group 5, which also 
appears in the eighth segment of the nine TM 
proteins. 
 The prediction procedure is based on the 
detection of different TM segment groups using 
different discriminant functions, followed by 
matching with the 15 models shown in Figure 1. 
In the first stage, a query sequence is applied to 
each model and the best candidates for TM 
segments in the model are selected. This 
selection is done by a 17-residue-long sliding 
window, employing a discriminant function 
designed to distinguish the TM segments of the 
particular group from loop regions. Then, the 
models are compared by their scores. The score 
of a model is the sum of scores of the 
discriminant function given to each amino acid. 
 
Evaluation of Prediction Accuracy 
 
The evaluation of the performance was made 
on 89 membrane proteins that were collected 
from the literatures which reported 
experimental evidence of TM topology (Table 
1, 2). Homologous sequences are excluded 
from training sets used in the construction of 
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the discriminant functions. Results by two 
distributed programs, TopPred II [41] and 
MEMSAT [32] are also shown to clarify 
characteristics of performance of TSEG. Note 
that direct comparison between these 
distributed programs is difficult since there is a 
possibility that they used homologous 
sequences in the test set in training. Q3, used in 
the table, is the overall percentage of correctly 
predicted residues in the sequence: 
 

L
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The symbol Npq (p, q = T (transmembrane) or L 
(loop)) denotes the number of residues that are 
observed to be p and predicted as q. 
A drawback of Q3 is that it does not take the 
difference of the amount of TM segments and 
loop region in a protein into account. For 
example, suppose one extreme prediction 
engine, which always predicts that there are no 
TM segments in a query protein (i.e. all loop 
region). Since there are fewer residues in TM 
segments than in non-TM segments, this engine 
could still get a Q3 value which gives an 
impression that the performance is not bad. The 
following measure Q4, Q5 and Q7 are to 
compensate for this difference. 
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Q7 is Matthews’ correlation coefficient [48]: 
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A tendency of TSEG is that it makes fewer 
overpredictions than underpredictions. The 

other two methods score better in detecting TM 
segments (segment-based accuracy, Obs), but 
tend to overpredict them to reduce their 
protein-based accuracy, which is important as a 
clue of biological function. TSEG gains more 
improvements by considering the top 3 
probable models than the others, which makes 
it reasonable to consider alternative models. As 
shown in Table 2, TSEG is superior in 
recognizing seven TM proteins. We have also 
tested the performance to distinguish globular 
proteins and membrane proteins. TSEG 
recognized 836 out of 928 (90.1%) globular 
protein sequences correctly, while seven out of 
89 membrane protein sequences (7.9%) are 
falsely recognized as globular ones. 
 TSEG is a model-recognition approach 
to TM proteins. Models of TM proteins with 
more than 14 TM segments, β-type membrane 
proteins, membrane proteins with different 
topology can be added rather easily. 
 
Topology Prediction 
 
It has been observed that basic residues are 
more abundant in loop regions in cytosol than 
in those in periplasma [49,50] (positive-inside 
rule), or more in N-terminal flanking regions of 
the first signal-anchor segment than in C-
terminal flanking regions [51]. This fact can be 
readily implemented in prediction algorithms 
by counting positively charged residues [35,41] 
or more generally, by considering the amino 
acid composition [31,32]. It can also be built 
into the architecture of a hidden Markov model 
[36,37]. 
 
2. Prediction of Tertiary Structure 
 
The large gap between the number of available 
sequences and the number of solved tertiary 
structures of membrane proteins makes 
attempts to predict structures from sequence 
information widespread. Since membrane 
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proteins are embedded in the two-dimensional 
membrane, the advantage of predicting tertiary 
structures of membrane proteins is that the 
procedure could be simplified to fit the 
arrangement of perpendicular TM helices 
followed by some modification. Baldwin made 
a model of rhodopsin using structural 
information for the arrangement of TM helices, 
which comes from careful investigation on the 
multiple sequence alignment of the family 
[52,53]. One of the basic ideas used is that the 
variation of amino acids would be found more 
frequently on the lipid-facing surface of helices 
rather than on the packing core sides. The 
location of polar residues is also taken into 
account. From the initial arrangement, the 
helices were inclined according to experimental 
evidence. Although this prediction procedure is 
based on a projection map by electron 
crystallography so that not all the possibilities 
of arrangements of TM helices are enumerated, 
the strategy shown by the author is reasonable 
and could be a foundation for subsequent 
studies. Donnelly proposed to use the AP value 
(3) for the arrangement of TM helices [54]. 
Suwa et al. used the polar interaction and the 
loop length between helices to allocate TM 
helices of bacteriorhodopsin on its projection 
map, in a fashion which is ready to be 
automated [55]. They also made an interesting 
attempt along this line by classifying of TM 
proteins by the pattern of polar energy surface 
calculated from their sequence [56]. The 
method by Du & Alkorta [57,58] is also an 
automated procedure, which uses the moment 
of the variability of hydrophobic/philic amino 
acids. Besides, the restriction used was the 
sequential packing of helices, not a projection 
map.  

All methods discussed above use 
projection maps or other restrictions in the 
arrangement of TM helices. But ideally, it 
would be better to take all possible 
conformations into account without relying on 

any other extra information, taking advantage 
of the limitation of conformations of TM 
proteins. One way to approach this is to use a 
hexagonal lattice for the arrangements of 
helices [59,60]. A drawback of the mentioned 
approaches would be in term of resolution, 
although the necessary resolution depends on 
the purpose. For example, they might not be 
able to differentiate structures of 
bacteriorhodopsin and rhodopsin, whose 
projection map shows some difference. 
Recently, Bowie presented an algorithm to 
construct a structure template set of more 
detailed conformations of TM proteins, which 
could be used by the threading approach [61]. 
Ideas of using threading for TM proteins have 
been presented previously by others [62,63]. 
Yet another approach is in the line of homology 
modeling [64]. Hu et al. predicted the structure 
of light-harvesting complex II, which is a 
complex of hetero dimers of helices. The TM 
regions are determined by prediction methods, 
and each helix is formed by homology 
modeling, followed by the energy minimization 
by molecular dynamics. 

Although several interesting approaches 
have been presented, this field still awaits more 
tertiary structures of membrane proteins to 
come, not only for taking structure parameters 
from them but also for verifying the 
performance of the approaches. 
 
3. Genome Analysis of Membrane Proteins 
 
Previous studies of comparative genome 
analysis of membrane proteins discussed 
mostly the estimation of the number of 
membrane proteins in genome sequences 
[36,81-85]. Here, we investigated the 
distribution (location) of TM proteins in 16 
complete genomes [65-80], and made function 
predictions of several TM proteins based on 
this observation together with structural 
information by TSEG [86]. 
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Detecting Membrane Proteins 
 
One should be cautious in the detection of 
membrane proteins: One reason is due to the 
fact that some proteins have highly 
hydrophobic signal peptides at the amino-
terminal region which will be cleaved off after 
translocation. Since the signal peptides could 
be easily misidentified as TM segments by 
predictive methods, these have to be properly 
removed beforehand. Another problem is that 
TM segments tend to bring about spurious hits 
in homology searches, because their amino acid 
composition is biased [87]. Therefore, the 
query membrane protein sequence should be 
preprocessed to mask out low-complexity 
regions by the SEG program [88]. We used 
both discriminant analysis and homology 
searches after the preprocess written above to 
collect candidates of TM proteins, followed by 
manual inspection to remove false positives. 
 
Number of Membrane Proteins 
 
The proportion of membrane proteins in each 
organism ranges from 18% to 29% (Table 3). 
This estimate is smaller than those based only 
on a TM prediction method, which reports the 
values at around 35%. The distribution of 
membrane proteins grouped by the number of 
TM segments is shown in Figure 2. The 
representative organisms are selected from each 
organism category. In all organisms, single 
spanning membrane proteins dominate 30-50% 
of the entire membrane proteins, and those with 
more than twelve TM segments are rare. There 
are roughly two peaks in the distribution 
especially in bacterial genomes, one around 4-6 
TM, and another one around 10-12 TM, which 
may be dominated by transporting proteins. 
 
Tandem Clusters of Membrane Proteins 
 

Figure 3 shows the location of membrane 
proteins in M. pneumoniae genome. 
Surprisingly, in all 16 organisms, 43.9-60.1% 
of the membrane proteins were found to be 
located next to each other, namely, in tandem 
clusters, which is statistically significant. In 
most of the cases (70% in terms of membrane 
proteins in tandem clusters, except for S. 
cerevisiae, which is 59.1%) a tandem cluster is 
formed by the genes on the same strand, and 
furthermore, (again 70% in terms of membrane 
proteins in tandem clusters, except for S. 
cerevisae, which is 22.1%) the gap between the 
genes is usually less than 300 bp, which implies 
that they are operons [89].  
 About 10-30% of the tandem clusters are 
conserved between organisms and/or within an 
organism. However, the conservation rate of S. 
cerevisiae is 2.2% and all of the conserved 
clusters are only within the organism, again 
showing its peculiarity. This is consistent with 
the fact that it doesn’t have bacteria-like 
operons [90]. The majority (97.3%) of the 
conserved tandem clusters fall into one of the 
three functional categories: Membrane 
transporters, electron transport system, and cell 
motility. Membrane transporters include ABC 
(ATP-binding cassette) transporters, the PTS 
(phosphotransferase system), protein export 
membrane proteins, multidrug resistant proteins, 
glucose/hexose transporters of S.  cerevisiae, 
and cobalt transport permease. The cluster size 
of this category is small, 2.6 on average. 
Compared with this, the category of the 
electron transport system has a larger cluster 
size, 5 on average. Another feature of this 
category is that typically one of the membrane 
proteins in a cluster contains more than ten TM 
segments. NADH dehydrogenase and proteins 
of cytochrome family belong to this category. 
The number of the conserved clusters in the 
third category, cell motility, is small (12 
clusters in total). It includes proteins of 
flagellar motor and chemotaxis proteins. 
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 If only clusters that have duplicated 
genes (i.e. a significantly similar pair of 
constituent genes, 150 in the Smith-Waterman 
score) are counted, the relationship among gene 
function and the cluster size and the number of 
TM segments in the genes becomes much 
clearer (Figure 4). More than 10% of the 
tandem clusters in each organism have 
duplicated genes. Using the difference of this 
distribution of TM proteins of transporters and 
the ones with the other functions, it is possible 
to make a chart which shows the likelihood of 
being a cluster of transporters rather than 
belonging to another category. Based on this 
empirical rule, we predict seven clusters of 
transporters out of 55 clusters of unknown 
function with gene duplication (Table 4). 
 
ABC Transporters 
 
The ABC transporter is an active transport 
system of the cell, which utilizes the energy of 
ATP hydrolization [91,92]. They form the 
largest superfamily of paralogous proteins in 
bacterial and archaeal genomes [93]. Actually, 
in our analysis, ABC transporters dominate 
42.3% of the entire conserved clusters and also 
contributes to making the characteristic 
distribution of transporters in Figure 4. A 
typical bacterial-type ABC transporter consists 
of two TM proteins, two ATP-binding subunits, 
and one periplasmic substrate-binding subunit. 
We searched components of ABC transporters 
by sequence similarity, starting with the 
reference set collected in our previous work 
[94] (Table 5). The proportion of the 
components is 2-7% in the genome, except for 
S. cerevisiae. Note here that the search used 
bacterial-type ABC transporters so that many 
eukaryotic ABC transporters [92] in S. 
cerevisiae were not detected. The ABC 
transporter is known to have well-conserved 
operon structure, but it turned out that there are 
some isolated components in each genome. 

Table 5 indicates ATP-binding components are 
more likely to be isolated than membrane 
components. However, this may be simply due 
to the fact that membrane protein components 
are less conserved [94] so that they have not 
been detected by sequence similarity searches. 
To find partners of these isolated components, 
we examined conserved pairs of ATP-binding 
proteins (Table 3, the right-most column) and 
membrane proteins (Table 6). Those predicted 
to be ABC transporters in Table 6 could form 
new types of ABC transporters. 
 Recently, we have extended our study to 
eukaryotic ABC transporters in genome 
sequences of C. elegans and D. melanogaster 
(fruit fly) [95]. We have classified those using 
the hidden Markov Model. 
 
The Omnibus Hypothesis 
 
We found that about half of the membrane 
protein genes in the genomes form tandem 
clusters, and only 10-30% of these were 
conserved among organisms. There are several 
possible explanations for this observation. First, 
the functional coupling of genes will be the 
most dominant biological constraint on such 
clustering in the genome [8,9,89]. The 
horizontal transfer may also result in gene 
clusters [96]. Second, clusters of functionally 
coupled non-membrane proteins may help form 
tandem clusters of membrane proteins as 
background clustering. However, since 
majority of non-membrane proteins do not form 
gene clusters as evidenced by the extensive 
shuffling of orthologous genes [97], we believe 
that this event alone cannot explain the 
statistically significant occurrence of tandem 
clusters of membrane proteins. 
 Third, it is possible that forming tandem 
clusters is favorable for the cellular mechanism 
of membrane protein expression. If this is true, 
it would be advantageous at the stage of protein 
translocation to the cell membrane. There are 
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two types of bacterial protein translocation 
machinery, Sec machinery dependent and 
signal recognition particle (SRP) dependent. In 
Sec machinery, SecB binds nascent proteins 
and delivers them to the SecY/E/G translocon, 
using energy from ATP hydrolysis by SecA 
and the proton motive force [98,99]. The two 
pathways seem to use a common translocon 
[100]. We speculate an implication of the 
tandem clusters for the SecB machinery. 
Considering the report that SecB forms a 
tetramer and can bind more than one 
polypeptide chain [101], and also the fact that 
bacterial mRNA is usually polycistronic, it may 
be favorable for the membrane protein genes to 
be positioned in tandem, so that SecB can 
deliver them all together like an omnibus. For S. 
cerevisiae this hyphothesis could not be applied 
in the same way, because there is no SecB-like 
protein [102], though the translocon complex is 
similar to bacteria [103]. We name this story 
the ominibus hypothesis and await the 
experimental analysis of genome-scale 
translocation mechanisms to verify it. 
 
Concluding Remarks 
 
In this manuscript, prediction methods of TM 
segments in proteins, including the TSEG 
program, and those of tertiary structures of 
membrane proteins are reviewed. In the latter 
section, the application of TSEG to genome 
sequences is described. A statistically 
significant number of membrane proteins form 
tandem clusters in a genome. We predicted 
seven clusters of transporters, according to an 
empirical rule concerning the cluster size and 
the number of TM segments. This was an 
attempt to use the information of structural 
features and that of the location of the coding 
region in the genome in functional annotation. 
In addition, we identified probable membrane 
protein partners of isolated ATP-binding 
protein components of ABC transporters by 

searching for conserved pairs of a membrane 
protein and an ATP-binding protein. This 
approach can be further generalized to include 
other types of coupling, such as identifying 
sequence motifs that are known to be present 
on two interacting proteins. Generally speaking, 
a prediction method of TM segments is 
relatively accurate compared to other types of 
structure prediction methods, so it could 
compensate for the limitation of the sequence 
similarity search. Complete genome sequences 
bring us opportunities of comprehensive 
understanding of life through classified tables 
of genes. To classify transporters, Saier Jr. et al. 
proposed a transport commission (TC) number, 
which is a classification number of membrane 
transporting proteins [10]. In the next few years, 
our knowledge of membrane proteins will 
widen and become more organized through the 
analysis of genome sequences of higher 
multicellular organisms, which have membrane 
proteins with a large variety of functions, such 
as cell signaling and cell adhesion. 
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Table 1. Prediction Accuracy 
Method Ranka  Protein

-basedb 
 Segment-based c Residue-based 

  (%)  Obs (%) Prd  (%) Over Under Q3(%) Q4 Q5 Q7 
TSEG top1 61.8  85.1 91.5 28 53 88.1 0.855 0.618 0.687 
 top3 74.2  92.1 95.3 16 28 90.0 0.887 0.674 0.741 
TopPredII top1 57.3  90.4 83.3 64 34 86.8 0.845 0.610 0.681 
 top3 60.7  92.1 86.0 54 29 87.9 0.858 0.642 0.714 
MEMSAT top1 52.8  86.2 85.7 51 49 89.3 0.844 0.626 0.701 
 top3 66.3  87.0 92.5 25 46 90.8 0.856 0.663 0.740 

 
a Up to 1, 3 predictions were considered. 
b Counted if all the TM segments are predicted in their correct position (more than 11 residues overlap).  
c Obs/Prd, observed/predicted segment overlaps, Over/Under, number of false positive/negative segments. 
 



 
Table 2. The Number of Correctly Predicted Proteins a 
TM Number of 

Proteins  
TSEG  TopPred

II 
MEMSAT

1 35 26 25 23
2 8 7 6 6
3 3 3 3 2
4 9 5 5 6
5 6 4 3 3
6 8 3 4 4
7 6 4 1 1
8 6 0 0 0
9 1 0 0 0

10 2 0 0 0
11 0 - - -
12 4 3 4 2
13 0 - - -
14 1 0 0 0

a Top1 predictions are counted. 
 



Table 3. The Numbers of Predicted TM proteins and ATP-binding Proteins 
Category Organism Total 

Genes 
Membrane 
Proteins (%) 

ATP-binding 
Proteinsa (%) 

Archaea M.jannaschii (Mj) 1735 326 (18.8) 130 (7.5) 
 M.thermoautotrophicum (Mt) 1871 395 (21.1) 127 (6.8) 
 A.fulgidus (Af) 2407 499 (20.7) 158 (6.6) 
 P.horikoshii (Ph) 1829 433 (23.7) 148 (8.1) 
Bacteria E.coli (Ec) 4289 1142 (26.6) 293 (6.8) 
 H.influenzae (Hi) 1717 378 (22.0) 153 (8.9) 
 H.pylori (Hp) 1566 334 (21.3) 118 (7.5) 
 B.subtilis (Bs) 4100 1125 (27.4) 277 (6.8) 
 M.genitalium (Mg) 467 90 (19.3) 61 (13.1) 
 M.pneumoniae (Mp) 677 123 (18.2) 73 (10.8) 
 M.tuberculosis (Mtu) 3918 949 (24.2) 213 (5.4) 
 B.burgdorferi (Bb) 1256 297 (23.6) 85 (6.8) 
 T.pallidum (Tp) 1031 228 (22.1) 95 (9.2) 
 Synechocystis sp. (Ss) 3166 918 (29.0) 218 (6.9) 
 A. aeolicus (Aa) 1522 304 (20.0) 130 (8.5) 
Eukarya S.cerevisiae (Sc) 6215 1652 (26.6) 414 (6.7) 
a ATP-binding proteins are detected by P-loop ATP/GTP binding motif in PROSITE. 
 
 



Table 4. Predicted Transporters According to the Number of TM segments and the Cluster Size 
Organism Duplicated 

Genes a 
TM Additional 

Protein 
TM Cluster 

Size 
Mj MJ0419 (+) 10   2 
 MJ0420 (+) 9    
Ec b0786 (+) 7 b0788 (-) 7 3 
 b0787 (+) 7    
Bs YybM (+) 5 YybL (+) 5 3 
 YybK (+) 5    
Mg MG225 (+) 10   2 
 MG226 (+) 11    
Bb BB0050 (+) 5   2 
 BB0051 (+) 5    
Bb BB0807 (+) 5 BB0806 (+) 1 3 
 BB0808 (+) 6    
Tp TP0883 (-) 6   2 
 TP0884 (-) 5    
a The strand direction is shown in parenthesis.  
 



Table 5. The number of Bacterial-type ABC Transporter Components 
  Isolated Components b 

Organism Total Number of 
ABC Transporter 
Components (%a) 

Membrane 
Components 

ATP-binding 
Components 

Substrate-binding 
Components 

Mj 39 (2.2) 1 5 - 
Mt 36 (1.9) - 6 - 
Af 97 (4.0) 1 7 - 
Ph 85 (4.6) 1 6 3 
Ec 242 (5.6) - 6 17 
Hi 105 (6.1) 2 5 3 
Hp 48 (3.1) 1 6 3 
Bs 207 (5.0) 1 13 9 
Mg 34 (7.3) - 2 - 
Mp 35 (5.2) - 3 - 
Mt 126 (3.2) 1 8 6 
Bb 44 (3.5) - 3 2 
Tp 50 (4.8) - 7 3 
Ss 139 (4.4) 8 17 16 
Aa 35 (2.3) 6 5 4 
Sc 38 (0.61) - 7 7 

a The proportion to the total number of genes. 
b Considered to be isolated if there is no other components within five gene positions on both sides. 
 



 
Table 6. Predicted Membrane Protein Components of ABC Transporters 
Cluster ID Organism ATP-binding Componenta Membrane Component TM 

1 Af AF0004 (+)* AF0008 (+) 10 
 Hi HI1252 (+)* HI1242 (-)* 10 
 Bs ExpZ (-)* YdgK (+) 11 
 Bs YfmM (-), YfmR (+) YfmO (+) 11 

2 Mg MG065 (+)* MG064 (+) 9 
 Mg MG468.1 (-), MG467 (-) MG464 (-) 6 
 Mp R02_orf465 (-) R02_orf1386V (-) 9 
 Mp K05_orf284 (+), 

K05_orf339 (+) 
K05_orf385 (+), 
K05_orf1882 (+) 

5,7 

3 Bs EcsA (+)* EcsB (+) 8 
 Bs YthP (-)* YthQ (-) 8 
 Ss s110489 (-)* slr0096 (+) 11 

4 Af AF1136 (+), AF1139 (+) AF1140 (+) 9 
 Af AF0393 (-)* AF0392 (-) 12 
 Ph PH1230 (+) PH1231 (+) 11 

5 Tp TP0881 (-)* TP0880 (-) 6 
6 Af AF1170 (+)* AF1169 (+) 4 
 Ph PH0157 (+) PH0159 (-) 5 

a Isolated components in Table 5 is shown with asterisks. 
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Figure Legends: 
 
Figure 1 
The models of the membrane proteins, which 
have one (1TM) to fourteen (14TM) TM 
segments, as well as for globular proteins 
(0TM). The N-terminus of the sequence is on 
the left. The larger black region corresponds to 
the higher average hydrophobicity. 
 
Figure 2 
The distribution of membrane proteins grouped 
by the number of TM segments. A.fulgidus (Af) 
from archaea, E. coli (Ec) from bacteria, 
S.cerevisiae  (Sc) from eukarya. 
 
Figure 3 
Membrane proteins in the M. pneumoniae 
genome. Membrane proteins are indicated in 
solid boxes.  The gray scale corresponds to the 
number of predicted TM segments: From left, 
1-2TM, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, 
15TM and more. 
 
Figure 4 
The frequency of membrane proteins that are 
paralogous within a tandem cluster, where each 
membrane proteins are classified according to 
the number of TM segments and the size of the 
cluster. (A), transporters; (B) membrane 
proteins with the other functions. 
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