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ABSTRACT

Computational prediction of side-chain conformation is an important component of protein structure prediction. Accurate

side-chain prediction is crucial for practical applications of protein structure models that need atomic-detailed resolution

such as protein and ligand design. We evaluated the accuracy of eight side-chain prediction methods in reproducing the

side-chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was

evaluated for a total of four different structural environments (buried, surface, interface, and membrane-spanning) in three

different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried resi-

dues in monomeric and multimeric proteins. Notably, side-chains at protein interfaces and membrane-spanning regions

were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for

training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and

membrane-spanning regions as for modeling monomers.
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INTRODUCTION

Proteins perform a wide variety of vital biological

tasks, including catalysis, signaling, and maintenance of

cellular structures. Protein tertiary structure provides

crucial information for understanding the atomic details

of these tasks. However, experimental methods for struc-

ture determination are resource-intensive and to date

lesser than 0.1% of protein sequences have a solved

structure.1 Furthermore, integral membrane proteins

present difficulties in many steps of structural determina-

tion; consequently, structures of membrane proteins are

underrepresented by an order of magnitude2 in the Pro-

tein Data Bank (PDB).3 In part to improve structural

coverage of sequence data, much effort has been dedi-

cated to the development of accurate computational pro-

tein structure prediction methods.4 In the protein

structure prediction field, the accuracy of models has

been primarily evaluated in terms of main-chain confor-

mation as it has been done in the Critical Assessment of

Structure Prediction, a biennial evaluation of the field.1,5

Although structure models with the correct fold but lack-

ing atomic detail have several useful applications, includ-

ing fitting structures to an electron microscopy map,6

predicting function from structure,7 and guiding and

interpreting site-directed mutagenesis, full atom models

are needed for many important applications of computa-

tional models. Notable examples include artificial design

of proteins8 that fold into desired folds9,10 or bind spe-

cifically to molecules such as proteins11,12 and DNA13

as well as design of molecules that bind specifically to a

protein.14 Additionally, atomic-level accuracy is needed

for using computational models for molecular replace-

ment in X-ray crystallography.15 Accurate side-chain
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prediction is becoming critically important for computa-

tional models used in recent applications, which are

expanding the biological usefulness of modeled

structures.

Side-chain prediction also has applications with struc-

tures that have already been solved, such as determining

the docking conformation of a protein complex where

the subunit structures were solved separately.16–18 Resi-

dues at a protein–protein interface exhibit a different

conformation than the same residue in solution19; thus,

predicting the interface side-chain conformation of the

complex improves the accuracy of the docked structure.

In the past decades, dozens of side-chain conformation

prediction algorithms have been developed. Works from

the 1970s investigated the distribution of side-chain con-

formations in known structures.21,22 Observation of

side-chain distributions led to the idea of rotamers23–26

and conformers,27 which are discrete sets of side-chain

conformations for each amino acid often used by predic-

tion programs. An advantage of using a library of

rotamers is that the side-chain conformation prediction

problem can be addressed as a combinatorial optimiza-

tion problem, to which various optimization algorithms

can be applied. Such algorithms include dead-end elimi-

nation,28 neural networks,29,30 the A* algorithm,31 an

evolutionary method,32 an iterative optimization apply-

ing a mean field theory,33 and a graph decomposition of

side-chain clusters.34,35 Alternatively, energy minimiza-

tion may be applied without using a rotamer library.36–

38

In this work, we benchmarked eight available side-

chain conformation prediction programs. Unlike previ-

ous works that have classified residues by environment

but only as buried or nonburied,39,40 in our benchmark

we further classify nonburied residues as protein interact-

ing interface (protein exposed), membrane-spanning

(lipid exposed), and surface (aqueous exposed) for a

total of four environments. Many methods were trained

using only soluble monomeric proteins35,38,39 and as a

result are not necessarily expected to predict with high

accuracy in protein interface and intramembrane envi-

ronments. Nevertheless, given the particular importance

of protein structure prediction for membrane proteins

and protein–protein docking, we wanted to determine

whether these methods retain high prediction accuracy

for membrane and multimeric proteins. This would serve

both to evaluate the validity of using monomer-trained

side-chain prediction methods on nonmonomer proteins

and to highlight potential areas of improvement for these

methods. It is also worth noting that almost all previous

benchmarks have been performed by developers of side-

chain conformation prediction methods; in contrast, we

have no vested interest in the accuracy of any particular

method.

For all methods except one, overall v1 angle accuracy

exceeded 80%. Buried residues were best predicted. Con-

trary to expectation, side-chains at protein interfaces and

membrane-spanning regions were better predicted than

surface residues even though most of the methods did

not use multimeric or membrane proteins for parameter

optimization. Thus, we conclude that the current meth-

ods are as practically useful for modeling protein dock-

ing interfaces and membrane-spanning regions as for

modeling monomers. Accuracies of each amino acid type

relative to accessible surface area (ASA) and conforma-

tional entropy are also discussed.

MATERIALS AND METHODS

Selection of software

Our search for software programs to predict side-

chain conformations from backbones found nine

options: FoldX,38 IRECS,41 OPUS-Rota,42 OSCAR,40,43

RASP,44 Rosetta-fixbb,45 Scap,46 Sccomp,39 and

SCWRL4.35 Of these nine programs, we were unable to

use three: IRECS, OPUS-Rota, and Scap. Neither IRECS

nor Scap ran and while OPUS-Rota ran using complete

PDB files, it produced invalid results given backbone

coordinates only. This left six programs, two of which

had slow and fast versions. In total, we compared eight

algorithms for predicting side-chain conformations from

backbones: FoldX, OSCAR-o and OSCAR-star, RASP,

Rosetta-fixbb, Sccomp-S and Sccomp-I, and SCWRL4.

The algorithms differ in three primary ways: rotamer

library, scoring function, and search procedure.

FoldX

FoldX38 is designed to predict the free energy change

caused by single residue mutation. Thus, its primary

purpose is not side-chain conformation but it models

side chains in the course of energy computation. FoldX

models side chains using the mutate function of WHAT

IF.47 The FoldX scoring function is a linear combination

of the following terms: solvent exposure, van der Waals,

solvation, hydrogen bonds, electrostatics, backbone and

side-chain entropy, and water bridges.

OSCAR

OSCAR40,43 uses the backbone-dependent rotamer

library by Dunbrack and Cohen.48 The OSCAR scoring

function includes the following terms: backbone depend-

ency, contact surface, overlapped volume, electrostatic

interactions, and desolvation energy. OSCAR has two

algorithm versions: OSCAR-o40 (slow) and OSCAR-

star43 (fast). OSCAR-star is a speed-optimized version of

OSCAR-o that uses a rigid rather than flexible rotamer

model. For both versions, the distance-dependent energy

function is represented as a power series and the side-

chain dihedral angle potential energy function is repre-

sented as a Fourier series. Finally, the distance-dependent
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energy function is multiplied by an orientation-

dependent function. To predict a protein conformation,

20 structures with random rotamers are initialized. Then,

low energy side-chain conformations are exchanged using

a genetic algorithm. Next, all 20 structures are optimized

using Monte Carlo simulation. These two steps are

repeated 30 times with decreasing temperature (simu-

lated annealing) and the lowest energy structure is kept.

RASP

RASP44 uses the backbone-dependent rotamer library

by Dunbrack and Cohen.48 In addition to rotamer prob-

ability, the RASP scoring function calculates backbone/

side-chain and side-chain/side-chain interaction energy

with the following terms: attractive and repulsive van der

Waals potential, disulfide bond energy, and hydrogen

bond energy. The search function begins by reducing the

search space with dead-end elimination. An interaction

graph is then constructed. Interaction energies are only

calculated between residues with Cb atoms within 5 Å.

An edge is created between residues if the difference

between the highest and lowest energy rotamer pair com-

binations is greater than 3 kcal/mol. Small graphs are

solved with branch-and-terminate and large graphs are

solved with Monte Carlo simulated annealing. Finally,

residues in clash are relaxed.

Rosetta

Rosetta-fixbb45 uses the backbone-dependent rotamer

library by Dunbrack and Cohen.48 The scoring function

uses the attractive and repulsive portions of the Len-

nard–Jones van der Waals energy, statistical energy of

backbone-dependent rotamers, Lazaridis–Karplus solva-

tion energy,49 distance-dependent residue pair potential,

and energy of side-chain/backbone hydrogen bonds. The

search function uses multiple Monte Carlo runs initial-

ized with a different random structure.

Sccomp

Sccomp39 uses a modified version of the backbone-

dependent rotamer library by Dunbrack and Cohen48

such that each rotamer of histidine, glutamic acid, and

asparagine are split into two: one with the original values

and the other with the terminal bond flipped 180�. The

scoring function is based on surface complementarity

(which reflects contact surface and binary chemical simi-

larity), excluded volume, intraresidue energy (rotamer

probability and residue size), and solvation (solvent-ASA

and atomic solvation). Sccomp has two algorithm ver-

sions, iterative (fast) and stochastic (slow). The iterative

algorithm (Sccomp-I) builds the side chains in descend-

ing order of neighbor count. Each side chain is modeled

one by one while holding the other side-chains fixed.

After each iteration, the modeling order is reversed. The

iterative algorithm stops, when the side-chain conforma-

tion is the same in two successive runs or the maximum

iteration number is reached. The stochastic algorithm

(Sccomp-S) initializes all residues to a random rotamer,

and then chooses a given residue’s rotamer according to

the Boltzmann distribution. Modeling starts with the res-

idue having the most neighbors and on subsequent steps

proceeds to a random neighbor. The probability a

rotamer will be accepted at each step follows the Boltz-

mann distribution.

SCWRL4

SCWRL435 uses a backbone-dependent rotamer

library that gives the rotamer probabilities, mean angles,

and variances as a smooth, continuous function of U
and W main-chain angles using kernel density esti-

mates.50 The scoring function consists of single rotamer

and pairwise rotamer energies which use attractive and

repulsive van der Waals and hydrogen bonding terms.

Interactions of rotamers in a protein are represented as a

graph. After removing edges that have virtually no inter-

actions and applying dead-end elimination to remove

rotamers from consideration, the graph is decomposed

into subgraphs for final rotamer optimization.

Training sets of the methods

As the protein datasets used to derive the rotamer

libraries and to train the algorithms are expected to

impact the accuracy of side-chain conformation predic-

tion, we summarized the types of proteins present in

these datasets in Table I. The first two rows of Table I

describe the protein datasets used by the rotamer libra-

ries. OSCAR, RASP, Rosetta, and Sccomp used the

rotamer library by Dunbrack and Cohen.48 SCWRL4

used the rotamer library by Shapovalov and Dunbrack.50

Table I
Number and Types of Proteins in Rotamer Library and Method Train-

ing Datasets

Proteins

Software Source Total Multimer Membrane

Rotamer Library by
Dunbrack and
Cohen48

PISCES 2.0 � 518 ? ?

Rotamer Library by
Shapovalov and
Dunbrack50

PISCES 1.8 � 3985 1971 13

FoldX38 ProTherm51 9 0 0
OSCAR40 PISCES 2.0 � 5279 ? ?
RASP44 PISCES 1.8 � 300 145 1
Rosetta-fixbb45 ? 30 ? ?
Sccomp39 PISCES 1.8 � 15 0 0
SCWRL435 PISCES 1.8 � 100 0 0

A question mark indicates that the information could not be found in the origi-

nal article.

Side-Chain Conformation Prediction Accuracy
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The Dunbrack and Cohen rotamer library has been

superseded by the Shapovalov and Dunbrack rotamer

library, so the details of the former are no longer avail-

able. However, as both rotamer library protein datasets

were compiled with the PISCES server52 and no removal

of multimeric or membrane proteins was described, it is

likely that the datasets show similar composition (49%

multimeric proteins and 0.3% membrane proteins).

For the method training datasets, many articles do not

list the exact PDB codes in the dataset. However, almost

all groups used the PISCES server52 to compile non-

redundant lists of PDB files. RASP used a dataset from

PISCES that contained 48% multimeric proteins and

0.3% membrane proteins (Table I). OSCAR also used a

PISCES dataset without removing multimers or mem-

brane proteins. By inference to the datasets used by

RASP and the rotamer library by Shapovalov and Dun-

brack, it is likely that the OSCAR dataset consists of half

multimeric proteins and a small number of membrane

proteins. Three methods were trained using only soluble

monomeric proteins: FoldX, Sccomp, and SCWRL4.

Importantly, none of the methods divided the training

sets by protein type or residue environment.

SELECTION OF BENCHMARK
PROTEINS

To compare the accuracy of protein side-chain confor-

mation prediction for different environments, we chose

sets of proteins from three categories: monomeric, multi-

meric, and membrane. Proteins that did not run on all

software methods were removed from the dataset. A total

of 10 proteins were removed for this reason. OSCAR-o,

Sccomp-I, and Sccomp-S did not complete 1vtz or 1yce.

OSCAR-o and OSCAR-star did not complete 2xfr.

Sccomp-I and Sccomp-S did not complete 1yn3, 2qap,

3mjo, or 4ery. RASP did not complete 2wwx, 3ivv, or

4ate. Counts of the protein types in the datasets can be

found in Table II. A full list of the proteins in the dataset

can be found in Supporting Information Table S1.

For monomers and multimers, we started with a non-

redundant subset of the PDB from the PISCES52 server:

resolution 1.6 Å or lower, maximum sequence identity

20%, and maximum R-factor 0.25 (2089 protein chains).

As an additional quality control step, we removed all

PDB files meeting any of the following criteria: missing

main-chain atoms, internal residue numbering skips, or

residues other than the 20 canonical amino acids. We

eliminated from the dataset PDB files with any ligand

larger than five heavy atoms. This was to remove side

chains with conformations primarily influenced by large

ligands. Proteins were classified as monomeric or multi-

meric using the biological unit annotation in the PDB,

favoring author annotation over software annotation.

Multimeric proteins with only one chain in the PDB file

were removed to avoid applying crystallographic trans-

formations, which can introduce atomic clashes as dis-

cussed by Krivov et al.35 For any PDB file with more

chains than the size of the biological unit, we checked if

the duplicated chains in the file had sufficiently similar

conformations. Such PDB files were included only if the

copies had the same number of atoms and an RMSD of

1.5 Å or less.

Integral membrane proteins were poorly represented

in the PISCES protein set. Therefore, we started with a

list of crystallized membrane proteins compiled by Ste-

phen White (http://blanco.biomol.uci.edu/mpstruc/; 766

PDB codes) and filtered the structures with the PISCES

server. Very few membrane structures have resolution of

2 Å or lower2; therefore, we included structures up to

2.8 Å resolution. We also allowed ligands with more than

five heavy atoms due to the frequent presence of lipid or

lipid-analog molecules. To finalize the dataset, each

membrane structure was visually inspected to confirm

the presence of membrane-embedded residues. The

membrane protein dataset represents proteins with a-

helical and b-barrel secondary structure, polytopic and

monotopic proteins, and monomeric and multimeric

proteins.

ENVIRONMENTAL
CLASSIFICATION OF RESIDUES

Residues in the three sets, monomeric, multimeric,

and membrane proteins, were further classified into one

of four environments: buried, surface, interface, or

membrane-spanning. Protein and residue counts of the

datasets are in Table II. Residues in monomeric proteins

were classified as buried or surface. We calculated relative

ASA of each residue by dividing ASA from DSSP53 by

the theoretical maximum ASA of that residue in the tri-

peptide GXG.54 A residue with relative ASA was less

than 10% was classified as buried. Other residues were

classified as surface.

Residues in multimeric proteins were classified as bur-

ied, interface, or surface. Each multimer PDB file was

separated into single chain files before the DSSP ASA cal-

culation described previously. Interface regions were

determined by finding residues with any heavy atom

within 5 Å of a heavy atom in a different protein chain.

Table II
Number of Protein Chains and Residues by Type and Environment

Residues by environment

Type Chains Residues Buried Surface Interface Membrane

Monomer 231 33461 11009 22452 n/a n/a
Multimer 132 13932 3632 7199 3101 n/a
Membrane 45 10847 3845 4305 n/a 2697
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Buried residues were classified as described earlier. A

nonburied residue in an interface region was classified as

interface. Other residues were classified as surface.

Residues in membrane proteins were classified as bur-

ied, membrane-spanning, or surface. Membrane PDB

files were not separated by chain before DSSP ASA calcu-

lation. When available, transmembrane region informa-

tion was obtained first from the MPtopo membrane

topology database55 or secondarily as determined by the

depositor. Proteins lacking transmembrane region anno-

tation were visually inspected, guided by topology images

found in the structure references, and anchoring aro-

matic residues (considered part of the membrane-

spanning region). Buried residues were classified as

described earlier. A nonburied residue in a membrane-

spanning region was classified as membrane-spanning.

Other residues were classified as surface.

PREDICTION PROCEDURE

Prior to predicting side-chain conformations, each

PDB file was reduced to backbone coordinates by remov-

ing side chain and ligand atoms with PHENIX.56 While

some of the software is able to use water and other

ligand information as input, we removed all ligands to

provide the same amount of input information to each

algorithm.

EVALUATING PREDICTION
ACCURACY

Prediction accuracy was evaluated in terms of pre-

dicted v1 and v2 side-chain torsion angles. v1 and v2 tor-

sion angles were calculated for each residue using the

PDB module57 of the Biopython package.58 The v1

angle is the dihedral angle between the planes defined by

the atoms N, Ca, Cb, and Cg; the v2 angle is defined by

Ca, Cb, Cg, and Cd. Each predicted torsion value was

subtracted from the corresponding torsion value from

the PDB file to obtain the torsion error. A predicted

angle was considered correct if the torsion error was in

the range of 640�, as in previous works.35,39,40,44 This

large window is due to the clustering of v angles at

260�, 60�, and 180�.59 Some residues have symmetry at

v1 (valine) or v2 (aspartic acid, leucine, phenylalanine,

and tyrosine). For example, the d position of aspartic

acid has two different atoms (denoted in a PDB file as

OD1 and OD2). In these cases, both possible predicted

v2 angles were compared to the angle from the PDB file

and the smallest error was kept. Mean v1&2 accuracy was

defined as the proportion of residues with a defined v2

angle that were correctly predicted for both v1 and v2.

Accuracy was averaged per protein chain to prevent large

proteins from disproportionately influencing the results.

For multimeric proteins, only the chain listed in the PIS-

CES database was checked for accuracy.

ENTROPY OF ROTAMERS

We used Shannon entropy (SE)60,61 to characterize

the distribution of rotamers in the experimentally solved

structures in the dataset. An even distribution has a high

SE while an uneven distribution (i.e., with a dominant

state) has a low SE. SE was calculated using Eq. (1). To

apply SE to side chains of amino acids in PDB files, we

used a maximum likelihood estimator on the v angle

distribution binned by 10� [Eq. (2), where ci is the count

in any bin].62

SE 52
Xn

i51

pi log 2 pi (1)

pi5
ciX

i

ci

(2)

RESULTS

We tested the side-chain prediction accuracy of eight

software methods on a dataset of 408 proteins. The data-

set includes monomeric, multimeric, and membrane pro-

teins (Table II). The modeled proteins and raw accuracy

data are made available at http://www.kiharalab.org/Side-

Chain_Dataset1/.

OVERALL ACCURACY

First, we examined overall accuracy for each method

(Fig. 1). Median per protein v1 accuracy was above 80%

for all methods except FoldX, which showed accuracy

about 10 percentage points lower than other methods.

OSCAR showed median accuracy close to 90%. v1&2

Figure 1
Prediction accuracy by method. Lower and upper hinges: first and third

quartile. Whisker length: 1.5 times the interquartile range. Dark gray:

v1, Light gray: v1&2.

Side-Chain Conformation Prediction Accuracy
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accuracies were 10–20 percentage points lower than v1

accuracies, with methods following the same rank as v1

accuracy. The observed v1 and v1&2 accuracies were con-

sistent with previous benchmark studies.35,39,40,43,44

The lower accuracy for FoldX is likely because the original

purpose of FoldX is not rotamer prediction but detailed

energetic analysis of single residue mutation. Comparing

the two versions of OSCAR, the median accuracy was sim-

ilar but OSCAR-star had a higher minimum accuracy

than OSCAR-o. Comparing the two versions of Sccomp,

Sccomp-S showed median accuracy slightly higher than

Sccomp-I for both v1 and v1&2. To compute average accu-

racy over different methods in subsequent discussion, we

excluded FoldX due to its lower accuracy than the other

methods as well as OSCAR-o and Sccomp-I because these

versions had accuracy similar to their counterparts.

We also examined the proteins that were predicted

poorly in Figure 1 by analyzing the lower outliers (more

than 1.5 times the interquartile range below the first quar-

tile). We compared the protein chain length distribution

of the outliers and the whole set (Fig. 2). The outlier distri-

bution peaked at a shorter length (30–40 residues) than

the whole set (70–90 residues). The outliers included a 27

residue short protein, fragment of rat tropomyosin (PDB

ID: 3azd), which was below 63% accuracy for all methods.

Next, we compared accuracy divided by method and

protein type. We performed statistical analysis on predic-

tion accuracy, treating differences between software

methods as the variable of interest and differences

between proteins as secondary variability (blocks). The

accuracy of each protein is expected to be independent.

Examination of the distributions of each method sug-

gested possible deviations from normality, so we checked

differences between methods using the nonparametric

Friedman test and performed pairwise comparison using

the Wilcoxon–Nemenyi–McDonald–Thompson test, both

available in the R package coin.63 OSCAR-star and

OSCAR-o were not significantly different in any group,

but they were more accurate than the other six methods

for v1 accuracy in soluble proteins (Table III). FoldX was

significantly less accurate than the other seven methods

except for membrane v1&2 accuracy.

The average accuracy did not drop substantially from

monomer to multimer proteins (a mean difference in v1

accuracy of 20.9 percentage points). Thus, the absence

of multimeric proteins in an algorithm’s training dataset

did not have a sizable impact on prediction accuracy for

multimeric proteins. A slightly larger difference was

observed between monomer and membrane proteins (a

mean difference in v1 accuracy of 22.5 percentage

points). Both Sccomp algorithms showed relatively less

variation by protein group. In contrast, the decreased

accuracy for membrane proteins was more than 3 per-

centage points for RASP, Rosetta, and OSCAR-star.

Accuracy by environment

We further compared the difference in accuracy by the

residue environments in the three protein types (Fig. 3).

Figure 2
Protein chain length distribution of the entire dataset (gray) and low

outliers in Fig. 1 (black). The outliers are the protein chains with v1

and/or v1&2 prediction accuracy less than 1.5 times the interquartile

range below the first quartile of the accuracy for each method. There
are a total of 65 outliers.

Table III
Mean Prediction Accuracy (Percent) by Protein Type and Method

Monomer Multimer Membrane

v 1 v1&2 v1 v1&2 v1 v1&2

OSCAR-star 88.3a 71.7a 87.3a 71.5a 85.0a 65.9a,b

OSCAR-o 88.1a 71.7a 87.4a 71.1a 85.4a 66.0a,b

SCWRL4 85.2b 72.0a 84.6b 72.3a 82.2b 68.6a

RASP 85.2b 71.0a 84.7b 71.5a 81.3b 67.4a

Rosetta 83.3c 68.2b 82.4c 68.3b 79.9b 63.3b,c

Sccomp-S 82.3c 59.6c 80.6c 59.4c 81.3b 59.0c,d

Sccomp-I 81.3c 57.7c 80.2c 58.4c 80.0b 57.5d,e

FoldX 70.4d 49.7d 69.5d 49.3d 68.7c 50.2e

Within each column, methods that share no letters are significantly different with

P< 0.05.

Figure 3
Prediction accuracy of proteins by protein type and environment. Val-

ues were averaged for OSCAR-star, RASP, Rosetta, Sccomp-S, and

SCWRL4. B: buried, S: surface, I: interface, M: membrane-spanning;
Dark gray: v1, Light gray: v1&2.
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Residue environments showed larger differences than

protein types. Median accuracy was highest for buried

residues (90–95% for v1), lowest for surface residues

(78–82% for v1), and intermediate for interface (87% for

v1) and membrane-spanning (82% for v1). This order

was consistent across protein types. v1&2 accuracy was

Figure 4
Prediction accuracy of proteins for each residue type and environment. Values were averaged for OSCAR-star, RASP, Rosetta, Sccomp-S, and
SCWRL4. B: buried, S: surface, I: interface, M: membrane-spanning; Dark gray: v1, Light gray: v1&2. Cysteine, serine, threonine, and valine do not

have d heavy atoms to calculate the v2 angle. The dataset did not include any cysteine residues in an interface environment. (a) monomeric and

multimeric proteins (b) membrane proteins.

Side-Chain Conformation Prediction Accuracy
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about 8 percentage points lower than v1 for buried resi-

dues but over 16 percentage points lower for surface

residues. Buried and surface residues showed very simi-

lar accuracy between monomeric and multimeric pro-

teins. In contrast, buried and surface residues in

membrane proteins had median v1 accuracy 4 to 5 per-

centage points lower. Therefore, the lower accuracy for

membrane proteins compared to monomer proteins

(Table III) was not solely due to the membrane-

spanning residues. Surface and buried residues are

expected to be in a similar environment regardless of

protein type, so the lower accuracy in membrane pro-

teins may have been due to the presence of lipid mole-

cules in the input files. In general, surface residues have

the fewest steric constraints; therefore, they can take on

more conformations and are more difficult to pre-

dict.35,46 Furthermore, residues in an X-ray crystal

structure that seem to be on the surface may exhibit a

conformation influenced by crystal contacts that are not

present in the raw PDB file.64

Figure 5
Prediction accuracy as a function of relative accessible surface area (RASA). Monomeric and multimeric proteins were combined. Residues with

RASA above unity were excluded. The data were smoothed using local regression (loess). Values were averaged for OSCAR-star, RASP, Rosetta,

Sccomp-S, and SCWRL4. B: buried, S: surface, I: interface, M: membrane-spanning.
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Accuracy by residue type

Next, we examined the prediction accuracy for each

residue type (Fig. 4). We combined monomeric and mul-

timeric proteins in Figure 4(a) as they showed similar

trends in Table III and Figure 3. Membrane proteins

were analyzed separately in Figure 4(b).

For monomeric and multimeric proteins, serine was

the least accurate while valine and isoleucine were the

most accurate [Fig. 4(a)], agreeing with the overall trend

of previous works.35,39,40 While accuracy was lower for

interface residues compared to buried in most cases,

seven residue types showed interface accuracy similar to

buried accuracy (arginine, histidine, isoleucine, leucine,

proline, tryptophan, and tyrosine). Two residue types

had v1 and v1&2 accuracy within 5 percentage points

(leucine and proline) while three showed differences of

20–40 percentage points (asparagine, glutamine, and his-

tidine). The high accuracy of proline v2 is most likely

due to its unique side chain to backbone connection and

consequent limited conformational space. The high accu-

racy of valine can also be attributed to its v1 symmetry.

Rotamers only account for rotation around single bonds

Figure 6
Prediction accuracy as a function of rotamer entropy. Monomeric and multimeric proteins were combined. Rotamer entropy was computed for res-

idues in three environments: buried, surface, and interface. Values were averaged for OSCAR-star, RASP, Rosetta, Sccomp-S, and SCWRL4.
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between sp3 hybridized atoms (e.g., a carbon with four

single bonds). Rotations around single bonds with an sp2

hybridized atom (e.g., a carbon with two single bonds

and one double bond) are nonrotameric degrees of free-

dom and show broader distribution compared to

rotamer angles.50 Among canonical amino acids, sp2

atoms include Cg of asparagine, aspartic acid, histidine,

phenylalanine, tryptophan, and tyrosine as well as Cd of

glutamine and glutamic acid. Thus, the relatively larger

drop in prediction accuracy from v1 to v1&2 of aspara-

gine and histidine may be due in part to the nonrota-

meric degrees of freedom at the v2 position.

For membrane proteins, in general buried residues were

predicted best, followed by surface and membrane-

spanning; only histidine, methionine, and tryptophan

showed membrane-spanning accuracy higher than surface

[Fig. 4(b)]. It is surprising that membrane-spanning resi-

dues were not predicted more accurately than surface resi-

dues, as surface residues are less physically constrained

than membrane-spanning residues, which is considered to

be the primary reason for poor surface residue prediction

accuracy.46 Compared to soluble proteins, lower accuracy

was observed for all cases except buried histidine. The rel-

ative accuracy rank of residues was very similar between

membrane and soluble proteins. In soluble proteins, tryp-

tophan median v1 accuracy was above 90% for all envi-

ronments; however, in membrane proteins, tryptophan

surface residue accuracy decreased to 70%.

Correlation between ASA and accuracy

We investigated the prediction accuracy of each amino

acid relative to ASA (Fig. 5). We found an overall decrease

in accuracy of about 17 percentage points from completely

buried to completely exposed residues (the subplot all).

This trend was consistent across all environments: buried,

surface, interface, and membrane-spanning. However, the

observed negative correlation was not as large as has been

previously reported.35 At the residue level, leucine, isoleu-

cine, threonine, serine, valine, and tyrosine showed only a

marginal decrease of about 10 percentage points. In con-

trast, methionine showed a decrease of 40 percentage

points. In most cases, interface residues have slightly

higher accuracy than a surface residue at the same ASA.

Correlation between rotamer entropy and
accuracy

We further examined correlation of prediction accu-

racy to rotamer entropy. The rotamer entropy computed

here quantified the randomness of rotamer distributions

in specific protein environments. It has been observed

that entropy does not correlate with solvent accessibility

of residues.33 In this analysis, three environments (bur-

ied, surface, and interface) in soluble monomeric and

multimeric proteins were used (Fig. 6).

Contrary to our expectations, surface positions did

not always have the highest entropy of the three environ-

ments. In fact, surface had the largest entropy for only

eight residue types (serine, lysine, methionine, phenylala-

nine, isoleucine, cysteine, glutamic acid, and arginine).

There were very small differences in entropy between resi-

due environments for five residue types, all of which are

hydrophobic (leucine, phenylalanine, proline, tyrosine,

and valine). Comparing buried and interface environ-

ments, interface has lower entropy in 11 residue types.

Buried residues had higher entropy than surface residues

in four residue types (asparagine, aspartic acid, histidine,

and threonine). Again unexpectedly, only three residue

types showed negative correlation between entropy and

prediction accuracy. Clear negative correlation was

observed only for lysine, glutamic acid, and arginine, all

of which are charged.

Consensus accuracy

We explored whether the consensus prediction

between methods increased accuracy. To create a consen-

sus, the rotamer angles were divided into 10� bins. For

each residue, the mode (most frequently predicted angle

bin) was determined. If there were multiple modes and

the range of the modes was greater than 40�, the residue

was classified as having no consensus. However, if a

Figure 7
Cumulative mean v1 accuracy and coverage by consensus of eight pre-

diction methods. The eight methods are listed in Table III. The soluble

group consists of the monomeric and multimeric proteins. The consen-
sus rotamer for each residue was computed as the most common

rotamer using 10� bins. The consensus strength was the number of
methods that predicted the consensus rotamer. At each strength cutoff,

the bars indicate the mean accuracy for residues with that consensus
strength or higher and the line shows the fraction of residues covered.

For comparison, accuracy of the best performing single method

(OSCAR-star) is shown.
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residue had multiple modes but the range of the modes

was less than 40�, the consensus was considered accurate

if all modes were within 40� of the PDB torsion angle.

Figure 7 shows cumulative accuracy and coverage at vari-

ous consensus strength cutoffs. The consensus rotamer

was more accurate than the best single method (OSCAR-

star) with a consensus strength cutoff of four or higher

at the expense of reduced coverage. The accuracy

increased as the consensus strength grew. Particularly,

accuracy of surface, interface, and membrane residues

increased to approximately 10 percentage points higher

than OSCAR-star.

Computational time

Finally, we compared the computational time of the

methods. For this test, we chose proteins between 36

and 341 residues in length (Supporting Information

Table S2), a range covering most of the proteins in the

whole dataset (Fig. 2). All times were measured on a

machine with an Intel Core i7–3820 3.6 GHz processor

and 24 GB RAM running Ubuntu Linux.

We can classify the eight methods into three groups

according to computational time needed (Fig. 8).

OSCAR-o, FoldX, and Sccomp-S spent on the order of

100 to 1000 s; OSCAR-star, Sccomp-I, SCWRL4, and

Rosetta-fixbb required on the order of 1 to 10 s; and

RASP was the fastest, completing all proteins on the

order of 0.01 to 1 s. Thus, considering the comparable

accuracy shown by RASP, its algorithm is efficient.

OSCAR-o showed the highest accuracy (Fig. 1, Table III)

but the computational time required grew quickly as the

protein length increased. RASP and Rosetta had the

smallest increase in computational time (1.4 and 2.0 s,

respectively) for the proteins we tested.

DISCUSSION

Accurate side-chain prediction is crucial for construct-

ing protein models with atomic detail. The importance

has been highlighted recently as more and more compu-

tational models are applied to protein design and drug

development, where atomic-level accuracy is essential. To

Figure 8
Computational time for proteins between 36 and 341 residues in length (Supporting Information Table S2). The times were measured on a Linux

machine with an Intel Core i7–3820 processor, 3.6 GHz.
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understand the performance of current side-chain con-

formation prediction software, we benchmarked eight

programs on a large dataset of 408 proteins and com-

plexes, including 231 monomeric proteins, 132 chains

from protein complexes, and 45 chains from membrane

proteins. This is the first large scale benchmark study of

side-chain prediction performed by a third party not

involved in developing any of the methods tested. It is

important to note that it is impossible to perform a

completely fair performance comparison as each method

is trained with a different dataset. Thus, this work is to

be considered as a practical evaluation of the methods

rather than a rigorous, competitive comparison between

the methods.

To expand the usefulness of this benchmark study, we

tested the methods on four residue environments (buried,

surface, protein interaction surface, and membrane-span-

ning) from three protein types (monomeric, multimeric,

and membrane). While none of the tested methods were

specifically trained on membrane or multimeric proteins,

we still wanted to test their accuracy on residues in differ-

ent environments because protein–protein interfaces

(docking) and membrane proteins have recently become

important targets of structure modeling. Among the envi-

ronments considered, protein surfaces were included as in

many previous works. Residues at protein surfaces change

their conformation in molecular dynamics simulations;

thus, one might wonder if reproducing the conformations

seen in crystal structures is meaningful. However, studies

have shown that side chains on surfaces adopt unambigu-

ous conformations, often through salt bridges and hydro-

gen bonds.65,66 In Figure 6, we showed that surface

residues did not always have higher conformational

entropy than buried or interface residues. Therefore, pre-

diction of surface side chains is relevant.

To summarize the main conclusions of this work: (1)

overall, monomeric and multimeric proteins had similar

high accuracy of over 80% (Table III). (2) As expected,

buried residues had the highest overall prediction accu-

racy. In multimeric proteins, interface residues were bet-

ter predicted than surface residues (Fig. 3). (3) Accuracy

for membrane proteins was lower than for monomeric

and multimeric proteins but still over 80% (Table III).

Thus, very importantly, current methods predicted side-

chain conformations of protein–protein interfaces and

membrane proteins with accuracy high enough for prac-

tical applications. (4) Membrane proteins showed lower

accuracy not solely due to low accuracy of membrane-

spanning residues; buried and surface residues in mem-

brane proteins also showed lower accuracy. (5) Small,

hydrophobic residues showed higher accuracy than large,

polar, and/or charged residues. (6) For all methods, v2

prediction accuracy left room for improvement.

In this work, we have focused on evaluating prediction

accuracy given the correct main-chain conformation.

However, in a practical structure prediction procedure,

the main-chain would also be predicted and have a

range of errors. Therefore, it is useful to analyze side-

chain prediction accuracy in the case that the main-

chain conformation is predicted with varying levels of

accuracy. It should also be noted that the accuracy

required of side-chain prediction depends on the appli-

cation of the computational models, for example,

ligand–protein docking or protein–protein docking pre-

diction. Ultimately, the practical usefulness of side-

chain prediction and its required accuracy must be

discussed in terms of the resulting accuracy of the

applications of the structure models, which is left for

future works.
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