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Identification of Moonlighting Proteins in Genomes Using
Text Mining Techniques

Aashish Jain, Hareesh Gali, and Daisuke Kihara*

Moonlighting proteins is an emerging concept for considering protein
functions, which indicate proteins with two or more independent and distinct
functions. An increasing number of moonlighting proteins have been reported
in the past years; however, a systematic study of the topic has been hindered
because the secondary functions of proteins are usually found serendipitously
by experiments. Toward systematic identification and study of moonlighting
proteins, computational methods for identifying moonlighting proteins from
several different information sources, database entries, literature, and
large-scale omics data have been developed. In this study, an overview for
finding moonlighting proteins is discussed. Then, the literature-mining
method, DextMP, is applied to find new moonlighting proteins in three
genomes, Arabidopsis thaliana, Caenorhabditis elegans, and Drosophila
melanogaster. Potential moonlighting proteins identified by DextMP are
further examined by a two-step manual literature checking procedure, which
finally yielded 13 new moonlighting proteins. Identified moonlighting proteins
are categorized into two classes based on the clarity of the distinctness of two
functions of the proteins. A few cases of the identified moonlighting proteins
are described in detail. Further direction for improving the DextMP algorithm
is also discussed.

1. Introduction

Most molecular level studies in modern biology concern the
functions of proteins and the mechanisms of how proteins
carry out those functions. Thus, function annotation of proteins
serves as fundamental information for biological studies. Algo-
rithms for protein function prediction are extensively studied in
bioinformatics.[1]
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In function annotation, it is generally
assumed that a protein has a single func-
tion and the possibility of the protein hav-
ing an additional function is not exten-
sively examined. However, over the past
decade, an increasing number of proteins
are accumulated that perform two inde-
pendent and distinct functions. A classic
example is an enzyme, l-arginosuccinate
arginine-lyase, which was found to func-
tion as a lens structural protein delta-
crystallin as well.[2] Proteins that have two
functions have been called in several dif-
ferent ways, such as bi-, dual-, multifunc-
tional proteins, multitasking proteins,
gene sharing, promiscuous enzymes,[3]

and moonlighting proteins,[4] but the
latter two have rather specific defini-
tions. A promiscuous enzyme is a pro-
tein that catalyzes a side reaction in
addition to its main reaction. Moonlight-
ing proteins perform two or more in-
dependent and distinct functions. In its
original strict definition by Constance
Jeffery, who coined the term,[4] the mul-
tiple functionalities are not due to gene

fusions, multiple domains, multiple splice variants, proteolytic
fragments, families of homologous proteins, or pleiotropic ef-
fects. Some mechanisms identified to be responsible for the
switch between two functions include different cellular local-
ization of the protein, expression in different cell types, ligand
binding sites, oligomerization states, and ligand concentration.[4]

Many knownmoonlighting proteins were originally identified as
enzymes, which were later found to have an additional function,
such as transcription factors.
Moonlighting proteins that exhibit multiple functions can

provide a competitive advantage to an organism from an evo-
lutionary standpoint, especially in prokaryotes, where growth
and the reproductive rate is directly associated with the num-
ber of genes translated and replicated.[4] Moonlighting proteins
are also known to manage cellular activities by providing a co-
ordinated framework by either self-regulation, e.g., thymidylate
synthase, an enzyme that can bind to its own mRNA inhibit-
ing its translation,[5] or by regulating other similarly functioning
proteins, e.g., cystic fibrosis transmembrane conductance reg-
ulator, a chloride channel that also regulates epithelial sodium
channel.[6] It was found that several moonlighting proteins play
important roles in cellular activities that are involved in can-
cer and other diseases.[7] Thus, moonlighting proteins may be
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interesting drug targets to effectively suppress disease develop-
ment if both functions of the proteins are involved in the tar-
get disease. On the other hand, blocking the activity of a moon-
lighting protein needs extra caution so that drugs only affect
the desired function of the protein. Understanding the func-
tional mechanisms of moonlighting proteins may lead to novel
ideas for artificial design of proteins of dual function. It will
also provide a foundation on how to avoid unexpected toxicity
of artificially designed proteins and a protein artificially placed
in a different cellular environment. With moonlighting pro-
teins in the picture, our understanding of the functional inter-
play of proteins in a cell would need a major and fundamental
update.[8]

Most of the currently knownmoonlighting proteins have been
found serendipitously, where researchers identify a known pro-
tein as having a different function in an unrelated biological con-
text. Jeffery’s Lab manually compiled a list of known moonlight-
ing proteins from literature in a database named MoonProt.[9]

Multiple functions for the proteins in this database were reviewed
by the authors based on published biochemical, mutagenic, and
other evidence. There is another database,MultitaskProtDB-II,[10]

where the authors curated a list of proteins that were found
in PubMed with keywords indicating multiple functions: moon-
light proteins, moonlighting proteins, multitask protein, multi-
tasking proteins, moonlight enzymes, moonlighting enzymes,
and gene sharing. Considering that we still only know a small
number of moonlighting proteins, it is important to develop
computational approaches that can systematically identify moon-
lighting proteins.[11] It was examined whether moonlighting pro-
teins exhibit sequence similarity to protein families of different
functions.[12] A second approach is to determine if there is a corre-
lation between disordered regions and multifunctionality of pro-
teins as disordered regions are often responsible for binding dif-
ferent proteins.[13] Another approach is to use protein–protein
interaction (PPI) based on the idea that moonlighting proteins
tend to interact with proteins with different functions or path-
ways reflecting their dual functionality.[14] Recently, Cheng et al.
developed MoonFinder, which finds moonlighting long noncod-
ing RNAs using subcellular location and function annotation of
interacting proteins with long noncoding RNAs.[15]

Previously, our group has developed a framework of three
methods for identifying potential moonlighting proteins based
on the different types of information available about the proteins
(Figure 1). Identifying moonlighting proteins on a large scale
is a challenge even for cases when the two or more functions
and their mechanisms are well known for proteins because the
UniProtKB database[16] does not label such proteins with a spe-
cific keyword, e.g., moonlighting proteins or dual functional pro-
teins. Thus, the right branch of the diagram in Figure 1 deals with
cases where the dual functionality of proteins is known. When
a protein’s function is well studied, documented, and annotated
with the gene ontology (GO)[17] in its UniProtKB entry, we can
directly compute the number of distinct functions of the protein
by classifying its annotated GO terms. GO is a pre-defined set of
vocabulary organized in a hierarchical fashion. Thus, the similar-
ity of GO terms can be objectively defined and computationally
measured. In our earlier work,[18] we developed a procedure for
clustering GO terms and identify moonlighting proteins and ap-
plied to the E. coli genome.

Significance Statement

There is an increasingnumber of proteins that have been found
to exhibit twodistinct and independent functions calledmoon-
lightingproteins.Moonlightingproteins have been attracting
attention recently because this concept requires us toupdate
our fundamental understandingof protein functions.Moon-
lightingproteins alsohave strong implications in drugdevel-
opment and artificial protein design. In this article, we intro-
duceour computationalmethods for systematic identification
ofmoonlightingproteins in genomes.Weappliedoneof the
methods,whichminesmoonlightingproteins from literature,
to three genomes and identified 13newmoonlightingproteins.

The second branch in Figure 1 is to handle proteins that have
associated literature but no GO annotation. One can read litera-
ture related to candidate proteins, albeit a time-consuming effort
if literature formany proteins needs to be examined. To overcome
this issue, we have developed a machine learning based method,
DextMP, which predicts if a protein moonlights or not based on
text information, such as titles and abstracts of publications asso-
ciated with the protein, or the functional information available in
the UniProtKB database.[19] DextMP uses recent computational
natural language processing techniques to encode the text infor-
mation, which is later fed into several machine learning classi-
fiers to identify potential moonlighting proteins.
Lastly, if several large-scale omics data for a protein are avail-

able, we can analyze the omics data to find characteristic pat-
terns of moonlighting proteins in them. This is what the MP-
Fit algorithm[20] is designed for, which corresponds to the left
branch of Figure 1. MPFit is based on a simple and intuitive
idea of moonlighting proteins. Since moonlighting proteins play
a role in two (or more) different functions, they probably tend
to interact with proteins from two (or more) different functional
groups or pathways, and show correlated expression patterns
and phylogenetic patterns[21] with proteins from two functional
groups/pathways. Therefore, MPFit considers the number of
functional clusters of interacting proteins in PPI, co-expression,
and phylogenetic profile networks as features of a query protein
and feeds it to a machine learning method (random forest) to
make the prediction of moonlighting proteins.
It should be noted that these three methods are currently used

for screening potential moonlighting proteins, and further man-
ual verification, such as a careful reading of related literature,
is needed to finalize a conclusion. This is because these meth-
ods do not examine the strict original definition of moonlighting
proteins mentioned earlier and because the semantic distance of
GO terms does not always capture the distinctiveness of func-
tions well. For example, we occasionally encounter cases that a
protein has GO terms that are distant on the GO hierarchy (and
thus judged as potential moonlighting proteins) but these terms
are somewhat related from a biological point of view. The latter
problem is difficult to fix because it originated from the hierar-
chical graphical structure of current GO.
In this work, we ran DextMP on three genomes, Arabidop-

sis thaliana, Caenorhabditis elegans, and Drosophila melanogaster.
In the original paper of DextMP,[19] the prediction accuracy was
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Figure 1. Different methods for identifying moonlighting proteins in a genome. When a protein is annotated, clustering GO terms based on their
similarity can identify multifunctional proteins. When a literature or functional description of the protein is available, the text mining tool, DextMP, can
be used. The omics-data-based method MPFit is useful when a protein is not annotated but several other data, such as protein–protein interaction,
expression profile, etc., is available.

benchmarked on known moonlighting proteins in E. coli, hu-
man, and mouse, stored in MoonProtDB. Since we considered
that the accuracy observed was sufficiently high for further ap-
plication (F-score, the harmonic mean of recall and precision of
over 0.9), here we applied it to three genomes whose moonlight-
ing proteins are not well studied.
After screening text information of proteins in the three

genomes, we performed a two-stepmanual literature check. Dur-
ing the process, we identified a problem caused by “hub publica-
tions”, papers that are associated with several proteins. Generally,
such papers comprise of large-scale genomics and proteomics
experiment. Hub publications tend to cause false positives, be-
cause multiple proteins, thus multiple functions, are mentioned
in the text. We removed hub publications to reduce false positives
and thus to reduce the burden of downstream manual literature
check steps. We identified 13 new moonlighting proteins, which
we classified into two classes depending on the confidence level.
Finally, four proteins in the high confidence level class are dis-
cussed individually.

2. Experimental Section

First, the analyzed genomes and the text information of proteins
used for detecting moonlighting proteins were described. Then,
the overall procedure used to identify moonlighting proteins in
the genome was explained, and then the algorithm of DextMP
was described.

2.1. Genome Dataset

DextMP was run on proteins in three genomes, Arabidopsis
thaliana, Caenorhabditis elegans, and Drosophila melanogaster.

Three criteria were applied for choosing these genomes. First,
model organisms were analyzed, because they were relatively
well studied and had abundant publications in PubMed. Second,
among popularmodel organisms, human, yeast, andXenopus lae-
vis were excluded, because they were analyzed in the original pa-
per of DextMP. Escherichia coli and mouse genomes were also
avoided, because moonlighting proteins of these two genomes
were abundant in MoonProtDB and were used for the parameter
training of DextMP.

2.2. Text Information of Proteins

For each protein, three types of textual information were
extracted. First, a title of each publication of the protein,
which was obtained from the list of “PUBLICATIONS”
in its UniProtKB entry. Second, an abstract of each pub-
lication, which was extracted from the PubMed database
(https://www.ncbi.nlm.nih.gov/pubmed/) using the PubMed ID
of the publication as the key for the database search. Third, the
functional description text of the protein, which was obtained
from the function subsection in the “FUNCTION” section in
its UniProtKB entry. The title and function description were
downloaded from https://www.uniprot.org/downloads.

2.3. Overall Procedure of Identifying Moonlighting Proteins

The procedure consisted of five steps (Figure 2A): 1) Proteins in a
genome were obtained from UniProtKB Swiss-Prot. 2) For each
protein, three different types of text information, literature ti-
tles, and abstracts as well as function summary description from
UniProtKB were obtained. Hub publications were omitted and
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Figure 2. Procedure of identifying moonlighting proteins used in this work. A) Overall procedure. Proteins in a genome were obtained from UniProtKB
Swiss-Prot. Three types of literature information: publication titles, publication abstract, and UniProtKB functional summary about the proteins were
extracted. DextMP predicted if a protein is a potential moonlighting protein or not based on publication abstracts. Predicted proteins underwent a
quick Manual Checking-1, and those which passed are checked again in Manual Checking-2 by careful reading of the literature to finalize the list of
moonlighting proteins. B) The DextMP algorithm. There are four steps in the algorithm: 1) Each abstract is cleaned and processed, which involved
removal of stop words, punctuation, and special symbols, followed by stemming and lemmatization. 2) Each of two language models, a deep learning
model and TFIDF, converted the cleaned text into a feature vector. 3) The feature vector (representing one abstract) was predicted as 1(moonlighting)
or 0(non-moonlighting). 4) A majority vote was applied to predictions made for the entire abstracts of a protein to predict if the protein is moonlighting
or non-moonlighting.

consequently, proteins that only had hub publications that asso-
ciated with more than three proteins were removed. 3) DextMP
was used to predict if a protein was moonlighting or not from
publication abstracts of the protein. 4) Predicted moonlighting
proteins were manually examined by quickly checking publica-
tion titles and the functional description in UniProtKB (Manual
Checking-1). Both text information can provide an indication if
two different functions were associated with the protein. 5) Pro-
teins that passed Step 4 underwent Manual Checking-2, which
was an in-depth literature review of the protein. This was the fi-
nal step where the two functions of the proteins were confirmed
as independent from each other by reading the literature.

2.4. The DextMP Algorithm

DextMP took textual information of proteins to predict if a pro-
tein was moonlighting or not using machine learning methods.
There were four steps in the DextMP algorithm (Figure 2B).
First, input text of a query protein underwent data clean-up.

In the original work of DextMP,[19] three different types of text
information were tested, which were publication titles, publi-
cation abstracts, and UniProtKB functional summary. Among
the three input types, using publication abstracts showed the
highest accuracy.[19] Hence, in this work, abstracts were used as
the protein text information. Cleaning up of text data (abstracts)

involved removal of stopwords, punctuations, and symbols. Next,
stemming and lemmatization was done using the nltk package
(a natural language analysis toolkit).
In the second step, the cleaned text (abstract) was converted

into a k-dimensional feature vector using a statistical language
model. Based on the accuracy reported in the original DextMP
paper,[19] two best language models were used, which were term
frequency inverse document frequency (TFIDF)[22] and a deep
neural network named the paragraph vector,[23] to construct the
feature vector. TFIDF is a vector that is computed from the num-
ber of counts of each word in the abstract relative to the frequency
of words observed in the text corpus, which is a dictionary of
words taken from all abstracts in a dataset. As the text corpus, a
dataset of abstracts was used for 263 moonlighting proteins and
162 non-moonlighting proteins, which were collected in the orig-
inal DextMP paper. The deep neural network learning language
model mapped a text (an abstract) into a vector space using a neu-
ral network, which was trained in a way that semantically similar
texts appeared closer in the vector space.[23] Thus, intuitively, a
vector constructed by the deep neural network captured similar-
ities of abstracts.
Subsequently (Step 3), each of four machine learning meth-

ods, linear regression (LR), support vector machine (SVM), ran-
dom forest (RF), and the gradient boosted machine (GBM), took
the input feature vector and classified it into moonlighting or
non-moonlighting. The prediction was binary, and each abstract
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Table 1. The number of proteins in each genome selected by each step of the procedure.

Genome After removing hub publications Predicted as moonlighting by DextMP Passed Manual Checking-1 Passed Manual Checking-2

Arabidopsis thaliana 7045 1,917 23 7

Caenorhabditis elegans 1600 1,193 16 3

Drosophila melanogaster 2663 2,86 19 2

associated with a query protein was predicted as 1 (moonlighting)
or 0 (non-moonlighting).
In the last step, the prediction made for each abstract of a pro-

tein was summarized by majority vote to make the final predic-
tion. Combinations of two language models (TFIDF or the deep
learningmodel) and four machine learning classifiers (LR, SVM,
RF, or GBM) resulted in eight final predictions for a protein. If
a protein was predicted to be a moonlighting protein by at least
one of the languagemodels—classifier combinations, the protein
was considered a candidate for moonlighting and passed to the
manual checking steps (Figure 2A).
The parameters of the language models and the machine

learningmethods were trained on the same dataset that was used
in the original DextMP paper.[19] The accuracy of DextMP on the
training dataset ranged from 0.716 to 0.936 for different combi-
nations of languagemodels—classifiers, which were comparable
to the values reported in the original paper. The program can be
downloaded from http://kiharalab.org/DextMP.

3. Results

3.1. Identifying Moonlighting Proteins

We ran our procedure (Fig. 2) to identify moonlighting proteins
on the three genomes. Table 1 shows the number of proteins that
were selected at each step of the procedure. In the A. thaliana,
C. elegans, and D. melanogaster genome, 7,045, 1,600, and 2,663
proteins, respectively, had at least one publication after remov-
ing hub publications, which appear as reference for more than
three proteins. Among them, 1,917, 1,193, and 286 proteins, re-
spectively, were predicted as moonlighting proteins by DextMP.
Manual Checking-1 reduced the potential moonlighting proteins
significantly, to 1.2, 1.3, and 6.6% for the three genomes. In this
step, we only checked titles of publications and UniProt function
summary of proteins, because paper abstracts were considered
as input data of DextMP in the previous step. Manual Checking-
2 which involves careful and thorough reading, finally predicted
13 newmoonlighting proteins. A summary of the proteins is pro-
vided in Table 2.
In general, there were two reasons for a protein that passed

Manual Checking-1 was not judged as a moonlighting pro-
tein in Manual Checking-2 when we read the abstract and the
main text of papers. The first case is that papers made it clear
that the protein was not moonlighting. For example, matrix
metalloproteinase-2 in Drosophila (UniProtKB ID: Q8MPP3) has
several publications indicating multiple non-related functions
such as tissues remodeling, motor neurons contraction, and
reepithelization during wound healing. However, whenwe inves-
tigated themechanism of these functions, we found that in all the

biological processes mentioned, the protein performs the same
proteinase activity. The second case is that there is not enough
information available to conclude that a protein is a moonlight-
ing protein. Tyrosine-protein kinase csk-1 (C-terminal Src kinase)
(UniProtKB ID: G5ECJ6) was such an example. csk-1 is known
to regulate Src family tyrosine kinases (SFKs). In C. elegans, two
SFK’s, src-1 and src-2, are identified, and it has been shown that
csk-1 specifically targets the C-terminal tyrosine of both src-1 and
src-2, negatively regulating their activities.[24]{Hirose, 2003 #355}
We found a paper that showed csk-1 is important for pharyn-
geal muscle organization, independent of src-1 and src-2.[25] This
piqued our interest; however, we found that src-2 is important
for larval and pharynx development, thus, csk-1 affects the phar-
ynx development both with and without the SFK’s involvement.
Further, it is suggested by the authors that csk-1 might interact
with another unknown protein to control pharynx development
by phosphorylating a tyrosine of the protein. Thus, we concluded
that csk-1 probably only has the kinase function and might not
perform a second function in pharyngeal muscle organization.

3.2. Case Studies

In Table 1, we classified the predicted proteins into two classes
based on the confidence of independence of two functions of the
proteins. For class 1 proteins there is a clear indication in litera-
ture that the two functions are independent of each other or that
the functions are performed in different locations in the organ-
ism. Proteins which seemingly have two separate functions, but
their independence is not well established by current knowledge
are categorized as Class 2. In the table, we also show the number
of domains defined in the Pfam database,[26] as protein multi-
functionality attributed to either gene fusion event or presence
of multiple domains is generally not considered as moonlight-
ing in the original definition. Below, we discuss the four Class 1
potential moonlighting proteins.

3.3. Chloroplastic Leucine Aminopeptidase 2

The first example is leucine aminopeptidase 2 (LAP2) from Ara-
bidopsis (UniProtKB ID: Q944P7). It is a di-zine metallopeptidase
that catalyzes the cleavage of amino acids fromN-terminal of var-
ious peptides. In the paper by Scranton et al., the peptidase ac-
tivity of LAP2 was demonstrated on a model substrate, leucine-
amino methyl coumarin.[27] In the paper, LAP2 has been shown
to have chaperone activity as well. Chaperones are proteins that
assist other proteins in folding and unfolding. The authors dis-
covered that LAP2 possess chaperone activity by observing that
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LAP2 prevented the thermal inactivation of two tested proteins
Luc and Ndel. It was further shown that the chaperone function
of LAP2 was independent of its peptidase function by mutating
the amino acids responsible for peptidase function.[27] This is a
relatively easy example to detect from literature because the title
and the abstract of this paper used the word “moonlighting”.

3.4. Actin-Depolymerizing Factor 9

The second protein is actin-depolymerizing factor 9 (ADF9) in
A. thaliana (UniProtKB ID: O49604). It stabilizes actin filaments
and acts as an antagonist to other ADF’s. In the presence of
ADF9, the acting filaments organize themselves into actin bun-
dles, which is similar to other actin bundling protein actions.
This function has been confirmed in vitro as well as in vivo.[28]

ADF9 is also important for the expression of flowering locus C
(FLC) gene, which is responsible for flowering, indicating that
ADF9 is a potential moonlighting protein. The adf9 mutation de-
creased the level of histone H3 at multiple sites of FLC promoter
region, indicating that ADF9 helps in maintaining the chro-
matin remodeling machinery intact, which regulates the FLC
expression.[29]

3.5. Dihydrofolate Reductase

Dihydrofolate reductase (DHFR) (UniProtKB ID: P17719) is an
important enzyme in the folate biosynthesis pathway, where
it synthesizes 5,6,7,8-tetrahydrofolate from 7,8-dihydrofolate.[30]

DHFR is already a known moonlighting protein in human,
where aside from its enzymatic activity, it also possesses the abil-
ity to bind RNA. DHFR in human binds to DHFR mRNA, thus
regulating its own synthesis.[31] The DHFR of Drosophila is a
moonlighting protein as well, as it also plays a role in cell survival
by interacting with another protein, known as vestigial protein,
and controlling gene expression.[32] Vestigial protein (vg) regu-
lates the formation of wings by interacting with nuclear regu-
latory proteins and controlling gene expression in the wing re-
gion. It has been observed that vg regulates DHFR expression
at the D/V boundary in the wing disc of Drosophila. Also, de-
crease in DHFR (and vg) leads to caspase mediated cell death
and wing margin defects.[32] Thus, the second function of DHFR
of Drosophila is different from that of human DHFR. As we see
in this example, it is not uncommon for a homologous protein of
amoonlighting protein to either not have a secondary function[33]

or has a different secondary function.[34]

3.6. Twinkle Homolog Protein

The last Class 1moonlighting protein, DNA helicase (UniProtKB
ID: B5 × 582), is a protein that can unwind the double-stranded
DNA helix into separate strands and opens the DNA to be used
as a template for DNA replication. On the other hand, DNA pri-
mase is an enzyme that catalyzes the synthesis of a small sin-
gle stranded RNA that helps in DNA replication. Generally, these
two functions are performed by two separate enzymes. The T7

bacteriophage gp4 proteins, however, is a multifunctional pro-
tein that has both helicase and primase activity.[35] The twinkle
homolog protein is homologous to the gp4 protein of T7 bacte-
riophage. Such homologs are present in several eukaryotes where
they function as only DNA helicases, losing their DNA primase
activity. The twinkle protein in A. thaliana is found to possess
both DNA helicase as well as primase activity, making it a dual-
functional protein. It is present in chloroplast and mitochondria
where its primase functions to produce RNA primers, whichmay
help in organelle DNA replication.[35]

The two functions of this protein are performed by different
domains as shown in Table 1 the primase function is carried out
by the toprim domain (Pfam ID: PF13662, Toprim 4) while the
helicase activity is performed by DnaB-like helicase C-terminal
domain (Pfam ID: PF03796, DNB-C). Note that the two-domain
structuremay disqualify this protein from being asmoonlighting
proteins by the original definition because it considers only cases
where bi-functionality is not due to multiple domains or gene
fusion events.

3.7. Class 2 Moonlighting Proteins

Table 1 includes nine Class 2 moonlighting proteins. For Class
2 proteins, two functions are described in the literature but due
to the lack of experimental evidence, it was unclear if one of the
functions is not an outcome of the other function. Class 2 cat-
egory also includes cases that one of the functions is assumed
from sequence similarity to a homologous protein. Since homol-
ogous proteins do not always share moonlighting function, the
assumed functions need to be verified by experiments.

4. Discussion

Moonlighting proteins are shedding new light on functional
studies of genomes and proteomes. The increasing number of
identified moonlighting proteins suggests that multiplicity of
functions of proteins would always need to be considered for
functional studies. Information for themultiple functions associ-
ated with a protein is listed in the UniProt, but is only indicated
in the functional description. As moonlighting in proteins is a
fairly new concept, the database has not provided a specific label
that indicates moonlighting, or more generally, bi-functionality,
which makes a systematic study difficult.
The most accurate approach to identify moonlighting proteins

is to manually read the published literature, that is, to search
for proteins that have been experimentally confirmed to perform
two or more functions. However, going through a huge amount
of publications is a daunting and prohibitively time-consuming
task. Our group has previously developed a text-mining tool,
DextMP, which takes text information from publications or func-
tional descriptions in UniProtKB and predicts if a protein moon-
lights or not. DextMP can computationally screen literature and
database entries of thousands of proteins in a genome and pro-
vides a short list of potential moonlighting proteins, significantly
reducing the load of users in checking the literature. In this work,
we performed genome-wide moonlighting protein identification
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for three genomes. From the short list provided by DextMP, we
applied a two-step manual literature and database check to find
promising moonlighting proteins. The first manual screening,
Manual Checking-1, i.e., checking literature titles and UniPro-
tKB functional summary, was introduced for efficiency, and in-
deed significantly contributed by speeding up the entire man-
ual check process. On the other hand, it is highly possible that
some genuine moonlighting proteins were missed by this step.
In practice, there is a tradeoff between the time requirement and
finding more moonlighting proteins by a careful and thorough
reading of literature. Manual Checking-2 is a thorough analy-
sis of the publications related to proteins. Specifically, we looked
for evidence where inhibition of one function does not affect
the second function and vice versa, confirming that both func-
tions are independent. Upon further improvement of the accu-
racy of DextMP, we aim to substantially reduce the manual post-
processing step; possibly, even removing the manual steps en-
tirely. Below, we discuss several directions for improvement of
DextMP.
While running DextMP, we discovered that hub publications,

papers that link to several proteins, confuse the program to clas-
sify them as moonlighting proteins. A preprocessing step, where
such papers are removed, is crucial to reduce the number of false
positives in the predictions.
We found that another source of false positives originated from

different levels of function descriptions in literature. For exam-
ple, there are often cases where protein functions are discussed
at both molecular and biological levels. At a molecular level, a
protein’s interacting partners, biological pathways the protein be-
longs to, or active site residues are described whereas biologi-
cal level descriptions include how the protein affects at a cell
or organism level, such as the development, proliferation, and
embryogenesis. Currently, DextMP cannot distinguish these two
types of functions, and therefore whenever both levels of infor-
mation are written, the algorithm identifies it as two indepen-
dent functions and classifies the publication as containingmoon-
lighting protein information. This was observed during manual
analyses of DextMP predictions. Being able to identify the two
classes of functions mentioned in the paper will greatly improve
the specificity of the model.
As shown in Figure 2, DextMP makes a prediction for an indi-

vidual publication associated with the protein separately, which
is then combined by a majority vote to make a final prediction.
Therefore, a moonlighting protein will be missed if only one
function is mentioned in each individual paper. Practically, this
seemed not to be a large problem as usually a newer paper re-
porting novel secondary functions mention the original function
of a protein in its abstract. To be able to consider the all papers
for a protein together, technically we will need to introduce a way
to judge similarity or dissimilarity of mentioned functions (i.e.
different, thus potentially moonlighting function) across papers,
which is an interesting technical challenge.
Finally, analyzing the whole papers instead of simply abstracts

will provide more information and will contribute to making
more accurate predictions, so long as useful information for clas-
sification can be effectively extracted from large text information.
Natural language processing (NLP) techniques are a fast-

growing area in artificial intelligence research. By introducing
new techniques in NLP, we hope to further improve DextMP and
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contribute in deciphering complex functional interplay of pro-
teins in the cell.
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