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ABSTRACT

Motivation: Importance of accurate automatic protein function
prediction is ever increasing in the face of a large number of
newly sequenced genomes and proteomics data that are awaiting
biological interpretation. Conventional methods have focused on
high sequence similarity-based annotation transfer which relies on
the concept of homology. However, many cases have been reported
that simple transfer of function from top hits of a homology search
causes erroneous annotation. New methods are required to handle
the sequence similarity in a more robust way to combine together
signals from strongly and weakly similar proteins for effectively
predicting function for unknown proteins with high reliability.
Results: We present the extended similarity group (ESG) method,
which performs iterative sequence database searches and annotates
a query sequence with Gene Ontology terms. Each annotation is
assigned with probability based on its relative similarity score with
the multiple-level neighbors in the protein similarity graph. We will
depict how the statistical framework of ESG improves the prediction
accuracy by iteratively taking into account the neighborhood of
query protein in the sequence similarity space. ESG outperforms
conventional PSI-BLAST and the protein function prediction (PFP)
algorithm. It is found that the iterative search is effective in capturing
multiple-domains in a query protein, enabling accurately predicting
several functions which originate from different domains.
Availability: ESG web server is available for automated protein
function prediction at http://dragon.bio.purdue.edu/ESG/
Contact: cspark@cau.ac.kr; dkihara@purdue.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Developments in genomics and proteomics areas over the last decade
have upshot into growing amount of newly sequenced genomes and
large-scale experimental data that require computational assistance
for predicting functions (Hawkins and Kihara, 2007; Hawkins et al.,
2008). Conventionally, sequence homology has been used as the
key information source for transferring annotations by comparing
the new sequences with a database of annotated genes. Although
considering homology is a genuine way of inferring function in the

∗To whom correspondence should be addressed.

light of evolution, practically, it is not always trivial to extract correct
function information from a sequence database search result.

Tian and Skolnick (2003) have observed that enzyme function
starts diverging quickly when the sequence identity falls below 70%
and E-values from PSI-BLAST are not always strongly correlated
to enzyme function conservation. Studies (Devos and Valencia,
2001; Friedberg, 2006) have shown that the traditional annotation
transfer methods may be reliable for very high sequence similarity
but are likely to be erroneous in many situations. Even though
sequence similarity strongly indicates functional similarity in many
cases (Duan et al., 2006), methods for interpreting results of
homology search needs to be expanded to consider weakly similar
hits. Concepts of phylogenetic similarity, structural similarity and
functional similarity are not necessarily interchangeable with the
sequence homology, and these terms map imperfectly with each
other (Fitch, 2000). It was demonstrated that non-critical transfer of
annotations from similar sequences while ignoring the multi-domain
architecture can result in serious prediction inaccuracies (Galperin
and Koonin, 1998).

To capture the complex relation between sequence similarity
and function, many methods have been developed. John and Sali
(2004) and Park et al. (1997) have explored the concept of using an
intermediate sequence to relate two weakly similar proteins that
can be potential homologs. Song et al. (2008) have developed
a method based on sequence homology network that compares
local neighborhood network of proteins for deciding the functional
similarity.

Recently, there have been efforts on developing automatic
function prediction methods which are built on BLAST (Altschul
et al., 1990) and PSI-BLAST. OntoBlast (Zehetner, 2003) uses
the E-values of sequence hits in a BLAST search to score Gene
Ontology (GO) terms. GOFigure (Khan et al., 2003) and GOtcha
(Martin et al., 2004) incorporate the hierarchical structure of GO
vocabulary (Harris et al., 2004) for scoring parental GO terms in the
hierarchy. GOAnno (Plewniak et al., 2003) extracts GO terms from
subfamilies of a multiple sequence alignment. GOPET (Vinayagam
et al., 2006) and ProtFun (Jensen et al., 2003) apply support vector
machine to sequence similarity features obtained from a BLAST
search. We have previously developed protein function prediction
(PFP) (Hawkins et al., 2006, 2009) that incorporates E-value-based
scoring of GO terms along with the functional association between
GO terms and parental GO term scoring. PFP is very successful,
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which is evidenced by the top rank in the function prediction
category in AFP-SIG 05 (Friedberg et al., 2006) and CASP7 (Lopez
et al., 2007) competitions.

Here, we report our new method, extended similarity group
(ESG), which is shown to significantly outperform PFP and
conventional PSI-BLAST search in a large benchmark dataset of
2400 genes. In addition, we find that the iterative search is able
to capture functions of a protein, which originate from multiple
functional domains in the sequence.

2 METHODS
ESG uses PSI-BLAST (Altschul et al., 1997) (version 2.2.18) as a sequence
database search tool. The maximum number of passes is set to three (−j 3).
The default inclusion E-value is used (−h 0.005). As described below, ESG
assigns a probability to GO terms based on the sum of relative significance
of E-value of sequences annotated with the GO terms.

2.1 Computing the annotation probability
We begin with N sequences retrieved by performing PSI-BLAST search with
the query sequence Q (Fig. 1A). This is called the first level of extended
similarity group, from which searches are further iterated. The sequences
obtained by PSI-BLAST search from the first-level ESG sequences are
called the second-level ESG sequences and so on for the next levels. Thus,
ESG covers multiple-level neighborhoods around the query protein. For
each query protein Q, we define the probability that Q has a particular GO
annotation fa, and this direct probability is given by Pd

Q( fa). Here, we use
two level neighbors but computations can be extended for multiple levels
with an exponential increase of computation time with respect to N .

2.2 ESG level one computation
Let S1,S2, ...,SN be the PSI-BLAST hit sequences for Q each with E-values
E1,E2, ...,EN , respectively (Fig. 1A). Every sequence gets a weight equal
to its relative E-value with respect to the E-values of all N sequences
[Equation (1)]. In the computation of weights, we use sequences with an
E-value of up to 1000. The score is shifted by a constant, b, which is given by
log(1000) to make the score a non-negative value. Using the binary function

Fig. 1. (A) ESG computation with one level. Sequences S1 to SN are
retrieved by PSI-BLAST search. (B) ESG with two levels. The second round
of PSI-BLAST searches are performed from each of the sequences, S1 to SN .

ISi ( fa) [Equation (2)], the direct probability Pd
Q( fa) for each annotation fa

assigned to Si is the sum of weights of sequences with the annotation fa
[Equation (3)].

Wi = −log(Ei)+b
N∑

j=1
{−log(Ej)+b}

(1)

ISi ( fa)=
{

1 if Si has fa annotation

0 otherwise
(2)

Pd
Q( fa)=

N∑
i=1

Wi ·ISi ( fa) (3)

2.3 ESG multilevel computation
For probability computation using two level neighbors of query sequence
Q, we perform the second iteration of PSI-BLAST search from each of the
sequences Si obtained at the first level (Fig. 1B). Thus, from each sequence
Si we obtain Ni sequences, Sij (1 ≤ j ≤ Ni). Each of these sequences has a
weight Wij , which is computed by applying Equation (1) to the PSI-BLAST
search from Si. Weight Wi of sequence Si at first level is distributed between
sequence Si and all its child nodes Sij using a stage weight parameter v
(0 ≤ v ≤ 1). This parameter decides the proportion of Wi that is allocated to
Si itself and its children together [Equation (4)].

Pd
Si

( fa)=v ·ISij ( fa)+(1−v)·
Ni∑

j=1

Wij ·ISij ( fa) (4)

PQ( fa)=
N∑

i=1

Wi ·Pd
Si

( fa) (5)

To compute the final Pd
Q( fa) the weights of sequences at two ESG levels that

have annotation fa are summed up in proportion of step weights as shown in
Figure 1B and Equation (5). Equations described here can be easily extended
for more number of iterative levels.

2.4 ESG with function association matrix
Function association matrix (FAM) is used by PFP to capture observed
correlation between GO terms in the annotation database. GO annotations
have a hierarchical structure with three distinct annotation categories, i.e.
molecular function, biological process and cellular component. Some of these
terms even pairs across different categories frequently occur together in the
database to annotate the same protein. FAM captures association of two GO
terms, fa and fj , as a conditional probability:

P( fa|fj)= c( fa,fj)+ε

c( fj)+ε ·µ (6)

where c( fa,fj) is the number of times fa and fj are assigned simultaneously
to a sequence and c( fj) is the total number of times fj appeared in UniProt.
µ is the size of one dimension of the FAM (i.e. the total number of unique
GO terms), and ε is the pseudo-count (we used 0.05 for ε).

PFAM
Q ( fa)=

N∑
i=1

Wi ·PFAM
Si

( fa) (7)

When using the two level system as described previously, we follow
Equation (7) together with Equation (4) except for replacing the probability
scores Pd

Sij
( fa) coming from each sequence hit Si by FAM probability

PFAM
Si

( fa). In Equation (8), we compute the FAM probability for sequence Si.
Isi ( fa) is the binary function [Equation (2)], fj are annotations of Si, P( fa | fj)
is the FAM [Equation (6)], NSi is number of GO annotations for Si, v is
the stage weight parameter. For the FAM probability given to the sequences
found in the second level, i.e. PFAM

Sij
( fa), Equation (9) is used. Equations (8)
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and (9) show that FAM is used only when the sequence Si is not annotated
with fa (i.e. ISi ( fa)=0).

PFAM
Si

( fa)=v

{
Isi ( fa)+(1−Isi ( fa)) ·max

(
Nsi∑
j=1

P( fa| fj), 1

)}

+(1−v)

{
Nij∑
j=1

Wij ·PFAM
Sij

( fa)

} (8)

PFAM
Sij

( fa)= Isij ( fa)+(1−Isij ( fa)) ·max

⎛
⎝ Nij∑

j=1

P( fa| fj), 1

⎞
⎠ (9)

In all the FAM computations, only the strong associations with a conditional
probability, P( fa |fj), of >0.7 are considered.

2.5 Top PSI-BLAST method
In the Top PSI-BLAST method, PSI-BLAST search is performed with a
default setting with maximum of three iterations. Then the top hit with an
E-value score better than 0.01 that has annotations is used for transferring
annotations to the query sequence.

2.6 PFP method
PFP uses PSI-BLAST to retrieve sequences similar to query sequence and
assigns scores to GO terms associated with these hits based on E-values. It
also incorporates FAM that captures association between GO terms.

s( fa)=
N∑

i=1

Nfunc(i)∑
j=1

((−log(E-value(i))+b
)
P( fa|fj)

)
(10)

Each GO term is assigned a score as shown in Equation (10), where s( fa) is
the final raw score assigned to the GO term, fa, N is the number of sequences
retrieved by PSI-BLAST, Nfunc(i) is the number of GO terms assigned to
sequence j, E-value(i) is the E-value for sequence i and P( fa |fj) is the FAM
score [Equation (6)]. Using the raw score distributions for each GO term in
a benchmarking dataset, PFP computes a P-value and the expected accuracy
from the P-value for the predicted GO terms. Here, we use predicted GO
terms with an expected accuracy of 0.8 or higher.

2.7 Sequence database with GO annotations
PSI-BLAST searches needed for ESG, PFP and Top-PSIBLAST method are
run against UniProt sequence database (Bairoch et al., 2005). Then, GO
terms associated to gene IDs are taken from the GO Consortium database
(Ashburner et al., 2000) version go_200804. Thus, the same sequence
database and the same setting are used for genes of any organisms. Along
with the annotation, we also use the evidence codes in the analysis shown
in Figure 4. In the evidence code, Inferred from Electronic Annotations
(IEAs) are those obtained from some computational method without any
experimental evidences.

2.8 Prediction accuracy
We evaluate prediction accuracy by the modified funsim semantic similarity
measure (Hawkins et al., 2009), and also by precision and recall. The funsim
score previously proposed (Schlicker et al., 2006) is modified to include
evaluation of GO terms in the cellular component category. The funsim
score is explained below.

2.9 The funsim semantic similarity score
The funsim score uses the frequency of GO terms, freq(c), in the database as
its basis [Equation (11)]. annot(c) is the number of times GO term c occurs
in the database to annotate different sequences and children(c) is the list of

child nodes of term c in the GO hierarchy. Probability for a GO term c is
given by Equation (12).

freq(c)=annot(c)+
∑

h∈children(c)

freq(h) (11)

p(c)= freq(c)

freq(root)
(12)

The similarity of two GO terms is computed by Equation (13), where S(c1,c2)
is the set of common ancestors of terms c1 and c2 in GO hierarchy. The
multiplier (1−p(c)) is to give less importance to a frequently occurring term.

sim(c1,c2)= max
c∈S(c1,c2)

(
2logp(c)·(1−p(c))

logp(c1)+ logp(c2)

)
(13)

Now consider two sets of GO terms, GOA and GOB, to be compared (e.g.
GOA is predicted GO terms and GOB is the correct terms). For each category
we compute sim(c1,c2) separately, comparing pairs of terms from GOA and
GOB, to form the matrix (Sij) [Equation (14)]. Akm and Bkn is the number
of terms in the set GOA and GOB in the category k, respectively. Then, the
maximum of the average score of row max or column max is selected as the
categoryScore for the category, k [Equation (15)].

(Sij)=sim(GOAki,GOBkj), (14)

for category k,i=1 to Akm and j=1 to Bkn

categoryScorek =max

⎛
⎜⎜⎜⎝

1
Akm

Akm∑
i=1

max
j=1...Bkn

(
Sij
)
,

1
Bkn

Bkn∑
i=1

max
j=1...Akm

(
Sji
)
⎞
⎟⎟⎟⎠ (15)

Finally, the funsim score between two sets of GO terms is defined as follows.
Unlike Schlicker’s method all the three GO categories are compared. The
maximum score in each category is set to 1.

funsim(GOA,GOB)= 1

3

⎛
⎜⎝
(

BPScore
max(BPScore)

)2+(
MFScore

max(MFScore)

)2 +
(

CCScore
max(CCScore)

)2

⎞
⎟⎠ (16)

Since funsim score matches each term from one set to any one term from
other set and takes average scores from such matches, it penalizes over
prediction.

2.10 Precision and recall computations
Along with funsim score we also use precision and recall for evaluation.
Precision is defined as TP/(TP + FP) and recall is defined as TP/(TP + FN),
where TP and FP denote true and false positive, respectively, and FN denotes
false negative. For computing precision and recall, we consider exact match
between predicted terms and the actual annotations of the sequence.

2.11 Benchmark dataset
We compare performance of function prediction accuracy on a benchmark
dataset of 200 protein sequences each from the following 12 different species
in the GO database: Arabidopsis thaliana, Bos taurus, Caenorhabditis
elegans, Drosophila melanogaster, Danio rerio, Escherichia coli, Gallus
gallus, Homo sapiens, Mus musculus, Pseudomonas aeruginosa, Rattus
norvegicus and Saccharomyces cerevisiae. Thus, there are in total of
2400 sequences. In each genome, 200 proteins are randomly selected
from those which have at least one sequence hit with GO annotations
within the E-value of 0.01 by PSI-BLAST against the GO database, in
order for the Top PSI-BLAST method to be able to provide function
prediction to all the sequences. This dataset is available at our web site
(http://dragon.bio.purdue.edu/ESG/testdata/).
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Fig. 2. Precision–recall curve of ESG predictions. Crosses show the data
points with the probability cutoff of 0.35.

3 RESULTS

3.1 Prediction accuracy of ESG
We have run ESG with two levels and at each level we have selected
the top N = 50 hits obtained by PSI-BLAST search. The stage weight
v is set to 0.5. Unless specified, ESG only uses direct probability,
but without FAM [i.e. Equation (5)]. Figure 2 shows the precision–
recall curve for ESG predictions. With the probability cutoff of 0.35,
fairly optimum precision of 68% and recall of 58% are obtained. For
higher probability cutoffs above 0.35, there was no strong increase
in the precision but the recall was falling sharply. At higher cutoffs,
the number of terms predicted was less as compared with the false
negatives in the prediction.

Figure 3A compares performance of ESG with PFP and the Top
PSI-BLAST method. We used two probability cutoff values, 0.35
and 0.15 for ESG. Among the methods compared, ESG shows
the best funsim score of 0.697 with the cutoff of 0.15. With the
probability cutoff of 0.35, the average funsim score decreased to
0.683, but it is still better than the performance of PFP and the Top
PSI-BLAST. The average funsim score of PFP and the Top PSI-
BLAST is 0.574 and 0.452, respectively. According to Schlicker
et al. (2006), the funsim scores in the range of 0.5–0.7 indicate that
GO terms are functionally related. It is very interesting that ESG
achieves better performance than PFP without using FAM (PFP is
using FAM). We also compared the three methods by the funsim
score with only using MF and biological process (BP) categories,
since GO terms in cellular component (CC) category is relatively
less developed (the total number of terms in MF, BP and CC is
8827, 15131 and 2182, respectively). ESG again performs the best
but the probability cutoff of 0.35 for ESG now shows a marginally
better performance than 0.15: the average funsim score of ESG (with
cutoff 0.35), ESG (0.15), PFP and the Top PSI-BLAST is 0.718,
0.717, 0.601 and 0.465, respectively. The graph is available in the
Supplementary Material. This result clearly shows that extensive
use of information retrieved from PSI-BLAST sequence search
result (by considering very weak hits: ESG and PFP; by extending
search space by iterative database search: ESG; considering GO term
association by FAM: PFP) significantly contributes in improving
function prediction accuracy.

In Figure 3B, we further compare the three methods with GOPET,
a SVM-based GO prediction method. As its available program only
computes GO terms in the MF category, this comparison is made in

Fig. 3. Prediction accuracy measured by the funsim score. (A) Average
funsim scores for ESG, PFP and Top PSI-BLAST for benchmarking dataset
across 12 species. (B), Comparison with GOPET with funsim score using
MF terms only.

MF. ESG with the cutoff of 0.15 shows the best performance (0.706),
and GOPET and ESG with cutoff of 0.35 follow with the score of
0.705 and 0.690, respectively. Moreover, note that we compared PFP
with GOtcha and InterProScan (Mulder and Apweiler, 2007) in our
previous work (Hawkins et al., 2009) and showed that PFP performs
significantly better than them (Figs 7 and 8 in the paper).

Next, we examine ESG’s performance on two sets of sequences,
one set with IEA and one without IEA(Fig. 4). The 200 sequences
for each organism are randomly selected for both with/without IEA.
This test is performed because predicting electronic annotation (i.e.
IEA) by another electronic method, ESG, may seem tautological and
thus seem trivial. It is shown that the funsim score of sequences with
and without IEA are almost the same, around 0.68. Therefore, good
performance of ESG (Fig. 4) is not biased by sequences with IEA.

At last in this section, we examine the effect of different levels of
iterations. We ran iterations up to 3 with N = 10 on the 200 E.coli
genes without IEA. The resulting funsim score was 0.693, 0.696 and
0.693, for 1, 2 and 3 levels, respectively. This result indicates that
ESG with two levels is quite optimal and further iterations probably
may not improve the accuracy.

3.2 Comparison of precision and recall values
In addition to the funsim score, we also computed precision and
recall using exact matches with the actual database annotations
(Fig. 5). ESG shows significantly higher average precision of 0.67 as
compared with those of PFP (0.10) and Top PSI-BLAST (0.10). In
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Fig. 4. The funsim score for benchmarking set with and without IEAs across
the 12 different organisms. Probability cutoff of 0.35 is used.

Fig. 5. Precision and recall values for ESG, PFP and Top PSI-BLAST.

terms of recall, ESG again shows overall the best performance over
the other two methods (PFP shows a slightly better performance on
the C.elegans dataset). However, the margin of ESG over PFP is
shrunken. The average recall for ESG, PFP and Top PSI-BLAST is
0.60, 0.50 and 0.12, respectively. We find that the key advantage
of ESG is the much smaller number of GO terms predicted by
ESG (on average 7) as compared with PFP (on average 56), giving
fewer false positives and maintaining high precision value. Top
PSI-BLAST gives 11 predicted GO terms on average, while the

Table 1. Prediction accuracy comparisons on the E.coli dataset

Method Precision Recall funsim Average no. of
terms predicted

ESG with FAM 0.566 0.810 0.711 12.3
ESG without FAM 0.794 0.773 0.726 7.3
PFP 0.111 0.518 0.565 56.5
Top PSI-BLAST 0.112 0.104 0.204 8.2

database annotations have on an average of 10 terms for each
protein. Narrowing to the minimum set of correct prediction by ESG
eliminates over predictions and is a main reason for the high funsim
scores shown in Figure 3.

3.3 Prediction accuracy for ESG with FAM
Next, we examine the effect of FAM on function prediction of
ESG. Recall that FAM is not incorporated to ESG, but has been
incorporated to PFP in the results so far shown. The testing ESG
with FAM is performed on the 200 E.coli genes, because the
computational time increases significantly when FAM is integrated
in ESG. For example, in a typical case of an ESG run without FAM
takes about 15–20 min, while it increases to 2 h or more when FAM
is used. FAM is added in following Equations (7–9).

As shown in Table 1, when FAM is incorporated, precision
of ESG falls from 0.794 to 0.566. But at the same time recall
improves from 0.773 to 0.810. Reflecting the drop of precision, the
funsim score is slightly deteriorated by using FAM from 0.726 to
0.711. FAM brings in additional information of GO term association
mined from the sequence database. Therefore, generally using
FAM results in predicting more GO terms. The average number
of GO terms predicted with FAM by ESG is 12.3 as compared
with 7.3 when predicting without FAM. This fact accounts for the
decrease in precision and the increase in recall by incorporating
FAM. The average number of predicted GO terms by ESG without
FAM is same as that of Top PSI-BLAST. In contrast, PFP makes
significantly larger number of predictions (i.e. 56.5 on average) using
the threshold expected accuracy value of 0.8, which result in a low
precision of 0.111.

3.4 Protein with multiple functional domains
In analyzing prediction results of ESG closely, we found that ESG’s
iterative search scheme is often effective in capturing multiple
functional domains of a protein. When a query sequence has multiple
domains, each sequence hit of the first level of PSI-BLAST search
shares at least one common domain with the query. Then, the second-
level search starting from each first-level hit can boost the score of a
domain by identifying more sequences that share the domain. Such
examples of proteins where conventional BLAST search assigns
false positive annotations due to their multiple domains are shown
in Figure 6 (Song et al., 2008). PDGFRB and PRKG1 have a
statistically significant alignment with an E-value of 2e-13. They
have protein kinase domain in common, while Ig-like C2-type
domains are unique to PDGFRB and cyclic nucleotide binding
domains are unique to PRKG1. Now PDGFRB and NCAM2 have
a significant alignment with an E-value of 1e-8, having Ig-like
C2-type domains in common. Although the two proteins, PRKG1
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Fig. 6. Domain structure of PDGFRB, PRKG1 and NCAM2 (figure is not
drawn to the exact scale of the proteins).

Fig. 7. Domain assignment accuracy.

and NCAM2, have a significant E-value with PDGFRB, their
functionalities differ due to the presence of other unique domains
to each protein: PDGFRB is β-type platelet-derived growth factor
receptor and PRKG1 is cGMP-dependent protein kinase 1, both of
which are involved in protein amino acid phosphorylation. NCAM2
with Fibronectin type III domains is unique in the sense that it
involves in neural cell adhesion. In this example, the E-value,
the alignment coverage, the number of shared domains, length of
alignments, etc., are not sufficient for correctly establishing the fact
that NCAM2 is involved in different biological process though it
shares the common domain with PDGFRB (Song et al., 2008).

Interestingly, ESG correctly assigns function to these proteins.
ESG predicts correct function for NCAM2 as involved in
‘cell adhesion’ with probability 0.9. The ‘protein amino acid
phosphorylation’ is predicted with a low probability of 0.25, which
is below the cutoff used. ESG predicted nine terms, while PFP
predicts 33 terms that contain the term ‘protein kinase activity’
with an expected accuracy of 0.979, even though kinase domain
is not present in NCAM2. For protein PRKG1 both ESG and PFP
predict the correct terms indicating that the protein is involved in
cyclic nucleotide-dependent kinase activity, with ESG predicting
total seven terms and PFP predicting 48 terms.

In Figure 7, we further investigated domain prediction accuracy
by ESG compared with Top PSI-BLAST on the entire benchmark
dataset. Pfam domains are assigned to sequences in the benchmark
dataset by referring to the Uniprot database, which gives a list of
Pfam domains for a given gene sequence. Then, a set of predicted GO

terms for a sequence are mapped to corresponding Pfam domains
using a GO to Pfam correspondence table available at the GO
database. Assuming that the set of Pfam domains are predicted by
ESG (or Top PSI-BLAST), these predicted domains are compared
with the domains assigned to each sequence to compute the recall.
Figure 7 shows that ESG captures more correct domains as compared
with Top PSI-BLAST. Note that it is very difficult to compute
precision of the methods in terms of Pfam domains because Pfam
domains and GO terms have many-to-many relationship.

4 DISCUSSION
In this article, we described a novel function prediction algorithm,
ESG, which extracts function annotation from the sequence
similarity space that is extended by the iterative database search. To
clarify characteristics of ESG, we compared performance of ESG
with two other methods, the Top PSI-BLAST method and PFP. Top
PSI-BLAST represents the typical homology search used in large-
scale genome annotation where annotation is transferred to the query
protein from the most significant hit in a search. PFP is a previously
developed method by our group that was proved successful in
automated function prediction. On the benchmarking dataset of
2400 sequences taken from 12 organisms, ESG consistently showed
the best funsim score among the three methods. Top PSI-BLAST
performed significantly worse than ESG and PFP.

At this juncture, we briefly discuss differences in design and
concept of PFP and ESG. PFP extracts relevant GO annotation even
from sequences with insignificant E-values by summing up scores
reflecting the E-value of sequences. FAM further expands PFP’s
sensitivity to capture related GO terms. ESG, in contrast, limits GO
terms to predict, by examining consistency of appearance of the GO
terms in a number of searches in the vicinity of the query sequence
on the sequence similarity space. Thus, PFP is designed to enhance
sensitivity, while ESG has better precision for GO term prediction.
Another difference is that ESG assigns probability to predicted GO
terms using a rigorous statistical framework as opposed to PFP,
which assigns a custom PFP score to GO terms and computes the
P-value from background distribution of the custom PFP score.

Biological implication by the success of ESG and PFP is that
there exist functional commonalities among proteins which are
not traditionally considered as homologous, and importantly, such
common function can be captured by making use of very weakly
similar sequences in a database search. To exemplify this statement,
ESG search for a query protein, P76216, is examined. P76216 is
involved in biological processes GO:0019544 arginine catabolic
process to glutamate, GO:0006525 arginine metabolic process and
GO:0006950 response to stress. And it has molecular functions
GO:0009015 N-succinylarginine dihydrolase activity, GO:0005515
protein binding, and GO:0016787 hydrolase activity. ESG could
predict all terms except for GO:0005515 with the probability cutoff
of 0.35. Figure 8 illustrates that many sequences with an insignificant
E-value hold common annotation to the query and some of them are
recaptured by the second-level searches. Out of the 1615 sequences
found, 268 have common annotations to the query. Note that this hit
rate is far better than random: a randomly selected set of same size
from the database contain 112 proteins that had at least one common
annotation.

There is a strong need for accurate automatic function prediction
methods as the number of sequenced genomes is rapidly increasing.
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Extended similarity group method

Fig. 8. Heatmap representation of sequence hits by ESG for a query
sequence, P76216. The left most column shows sequence hits by the first-
level ESG search sorted by the E-value. Each row represents one sequence.
The top 50 sequences used as queries in the second-level search are
surrounded by a thick rectangle. Sequences below the thick rectangle have
an E-value between 10 and 13. The second-level search results from each
of the 50 sequences are visualized in the next 50 columns. In columns of
the second-level search, gray boxes indicate that the sequences found in the
first-level search reappeared in the second-level search. Black boxes at the
right side of each row indicate that the sequence representing the row has
annotation common with the query. The figure represents the top part of
sequences obtained in the ESG computation.

Various efforts have been made to address this goal including
classification of large protein sequence space (Kaplan et al., 2005;
Loewenstein and Linial, 2008), considering protein structures (Yeats
et al., 2008), and pathway data (Kanehisa et al., 2008). A recent
trend is to consider heterogeneous experimental data sources such
as microarray and protein–protein interaction. Although such new
data can provide additional function information, obviously major
sources of function information reside in sequence databases.
Thus, sequence-based methods should remain at the center of
gene function annotation and it needs to be re-examined with a
fresh perspective to investigate the complex relationship between
sequence and functional similarity. ESG together with PFP shows a
promising future direction with strong evidences that there are still
rich sources of functional information in weakly similar sequences,
which are previously underestimated.
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