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Characterization and Prediction of Human  
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In this chapter, we introduce classification techniques that are used to 

predict group membership to which a data object belongs. In the first 

half of the chapter, we summarize several start-of-the-art classification 

algorithms. In the latter section, we show examples of applications of 

the classification techniques for prediction of protein-protein 

interactions in human proteome. 

1.  Introduction 

Classification is a form of data analysis that can be used to construct a 

model to describe data classes of interest and predict a predefined class 

to which an input object belongs. For example, a classification model can 

be built to categorize a human tissue into a normal or cancer class based 

on its gene expression pattern. A wide variety of classification 

algorithms have been proposed by numerous researchers in machine 

learning, expert systems, and statistics. Although the algorithms are 

based on different theories, their applications follow the same framework. 

Generally, data classification is performed in two steps on a data set, 

which is split into a training set and a testing set [1]. In the first step, a 

model is built on the training set to describe a set of data classes. The 

model is represented in a variety of forms, for example, a decision tree or 

                                                      
* Corresponding author. 
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a mathematical formula. In the second step, the model is applied to the 

testing set to evaluate its performance. If the accuracy of the 

classification model on the testing set is acceptable, the model will be 

adopted to classify a new data set for which class labels are not known. 

Classification techniques are widely applied for biological problems 

related to human health. For example, they have been applied to the cancer 

classification based on gene expression profiles by DNA microarrays. In a 

work by Golub et al. [2], classification models were based on a collection 

of tumor samples for which the cancer types or the eventual outcome were 

known. They classified tumor samples to known classes, which could 

reflect current states (such as different types of cancer) or future clinical 

outcomes (such as drug response or survival). Nayal and Honig [3] used 

crystallography data to analyze surface cavities of a nonredundant set of 99 

drug-target complexes, and exploited 408 physicochemical, structural, and 

geometric features to construct a random forest model to predict drug 

binding sites. Additionally, classification methods were used to predict 

protein-protein interactions (PPIs) in human proteome, since under-

standing PPI networks can provide insights into mechanisms of human 

diseases such as cancers [4]. Furthermore, classification methods have 

been extensively applied to the identification of protein function and 

function sites in proteins, using a linear discriminant rule [5], Naïve 

Bayesian [6], support vector machine [7] and random forest [8]. 

In this chapter, we first introduce several frequently used state-of-the-

art classification algorithms, namely, decision tree, neural network, Naïve 

Bayesian, support vector machine, and random forest. Then, we use the 

specific case of human PPI prediction as an example to show how 

classification methods are applied to this problem.  

2.  Classification methods 

2.1.  Framework of classification 

There are two categories of learning in machine learning, unsupervised 

and supervised learning. In unsupervised learning, classes to which input 

objects belong to are not defined in advance and it is aimed at finding 
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grouping or hidden structures in the input data. On the other hand, in 

supervised learning, input data with known class labels are used to 

construct a mapping from input data space to output class label space. 

Typically a classification task consists of four major components, namely, 

a dataset, a feature set and its representation, a learning algorithm, and 

model performance evaluation. The first part of this chapter focuses on 

introducing several commonly used learning algorithms in supervised 

learning. 

 

 
 
Fig. 1. A decision tree for a person that can indicate whether or not he or she has a breast 

cancer with high risk. The leaf node with + means a person with a high risk on breast 

cancer, and - is the class label for a person without high risk on breast cancer. Internal 

nodes are denoted by rectangles, and leaf nodes are denoted by ovals. The root as a 

special internal node is denoted by the rounded rectangle.  

2.2.  Classification algorithms 

In this section, we introduce several state-of-art classification algorithms, 

which are decision tree, artificial neural network, Bayesian model, 

support vector machine, and random forest.  
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2.2.1.  Decision tree 

The advantage of decision tree-based classification is that it can be easily 

interpreted and intuitively understandable by human. A decision tree is a 

flow-chart-like tree structures (Fig. 1), where each internal node denotes 

a test on an attribute and leaf nodes represent classes or class distribution. 

The top most node in a tree is the root node, which is the starting point of 

the classification and where all samples belong to.  

The algorithm is based on a statistical measure to select the best feature 

to split a node. The concept of impurity is usually used to evaluate the 

performance of a candidate feature in discriminating different class labels 

in the training samples [9]. Entropy is the most well known index to 

measure degree of impurity. 

Let S be a set consisting of s data samples. Suppose the class label 

attribute has n distinct values defining n distinct classes, Ci (for i=1,2,..., n). 

Let si be the number of samples of S in class Ci. The information needed to 

classify a given sample (called entropy) is given by 

 1 2 2

1

( , ,..., ) log ( )
n

n i i

i

I s s s p p
=

= −∑  (1) 

where pi is the probability that an arbitrary sample belongs to class Ci, 

thus pi = si/s. 

The impurity reduction or information gain of an attribute A is defined 

as: 

 1 2 1 2

1

( ) ( , ,..., ) ( , ,..., )
m

n j j j nj

j

I A I s s s w I s s s
=

∆ = − ×∑ , (2) 

where attribute A has m distinct values, which divide S into m subsets, 

and sij is the number of samples of class Ci in a subset Sj. The term wj is 

the weight of the jth subset. The attribute that leads to the maximal 

reduction of impurity is chosen to split a node among all candidate 

attributes. 

The basic module of the decision tree construction is a greedy 

algorithm that builds the tree in a top-down heuristic search using the 

recursive manner. The complete trial and error method for all the possible 

partitions is intractable, therefore, the top-down heuristic search is 
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employed on the recursive partition process. The search algorithm for the 

attribute is greedy and it never takes a step back to reconsider its previous 

choice.  

The well-known algorithm ID3 [10] uses information gain (Eq. 2) to 

select the attribute that will best categorize the samples into individual 

classes. The ID3 algorithm is then executed recursively on the smaller 

subsets. However, attributes with continuous values are not allowed in ID3, 

and the information gain measure is biased on the attributes with many 

values. As a successor algorithm to ID3, C4.5 [11] creates a threshold to 

handle continuous attributes and the normalized information gain to avoid 

the bias. 

 

 

Fig. 2. The interconnected group of neurons in an artificial neural network. Weighted 

connections exist between consecutive layers.  

2.2.2.  Artificial neural network 

Artificial neural network (ANN) is one of the most popular classification 

techniques, which is in the category of the artificial intelligence field that 

makes computers or machines simulate the thinking, psychology, 
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evolution, and intelligent behaviors of humans. The theory of artificial 

neural network is inspired by the structure of human brains, which can be 

simplified as the network of neurons that transfer information between 

each other to learn data and make a decision (Fig. 2).  The neurons in the 

input layer correspond to the attribute values of each training sample. 

The weighted outputs of these nodes are fed into a second layer, which is 

called a hidden layer. The weighted output of the hidden layer will be 

input to the next hidden layer. The weighted output of the last hidden 

layer will be input for neurons in the output layer, which makes the final 

prediction for given samples. One of the commonly used algorithms for 

training parameters for neural networks is the back-propagation method 

[12]. The back-propagation learning algorithm consists of two major 

phases: propagation and weight update. When the inputs of training 

samples are propagated forward, the net input and output of each neuron 

in the hidden and output layers are computed. Given a neuron j in a 

hidden or output layer, the net input, Ij, to neuron j is  

 j ij i j

i

I w O b= +∑  (3) 

where wij is the weight of connection from neuron i in the previous layer 
to neuron j, and bj is the bias (threshold value) of the neuron.  

For each neuron in the hidden and output layers, the net input is then 

transformed by an activation function. The sigmoid function is usually 

used to compute output Oj of neuron j as: 

 
1

1 j
j I

O
e

−
=

+
 (4) 

where Ij is input of neuron j. 

For training the weights in the network, the algorithm compares 

outputs from the neural network with the actual known class labels. 

Observed error for each training sample is fed back to update weights so 

that the error of outputs will be smaller. The process of updating weights is 

applied to each sample in a training dataset repeatedly until the weights do 

not change much or until the updates is performed by a pre-determined 

number of times. Please see a reference [12] for more details about the 

back-propagation learning algorithm. 
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2.2.3.  Bayesian model 

Bayesian classification is based on Bayes’ theorem. It can predict class 

membership probabilities, such as the probability that a given sample 

belongs to a particular class. Each training sample is represented by n 

variables (or attributes; X1, X2, X3,..., Xn). Suppose there are m classes, C1, 

C2, C3,..., Cm, for the class label variable Y. The possibility that a sample 

belongs to a class Ci  is defined by the Bayes theorem as follows: 

 1 2
1 2

1 2

( , ,..., | ) ( )
( | , ,..., )

( , ,..., )
n i i

i n

n

P X X X C P C
P C X X X

P X X X
=  (5) 

The Naïve Bayesian classifier assumes the independent relationship 

among its input attributes (Fig. 3). Therefore, the Eq. 5 can be rewritten as: 

 1
1 2

1 2

( ) ( | )

( | , ,..., )
( , ,..., )

n

i i i

i

i n

n

P C p X C

P C X X X
P X X X

=
=

∏
 (6) 

The class prior possibility P(Ci) is estimated as the fraction of samples 

belonging to Ci  in the whole training set.  

A Bayesian model classifies a sample to class Ci if and only if  

 1 2 1 2( | , ,..., ) ( | , ,..., )  for 1 j m, j i.i n j nP C X X X P C X X X> ≤ ≤ ≠  (7) 

 
 
Fig. 3. A graph model of Naive Bayesian. The variable Y (class label) is dependent on the 

input variables (or observed values), which are independent between each other. 
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In the case that there are only two classes (C1 and C2, m=2) (binary 

classification), a likelihood ratio (LR) score usually is used to determine 

the label of the sample. 

 1 2 1
1 2

1 2 2

( , ,..., | )
( , ,..., )

( , ,..., | )
n

n

n

p X X X C
L X X X

p X X X C
=  (8) 

In the naïve Bayesian model, the LR can be calculated as the product of 

the individual likelihood ratios with respect to the features considered 

separately.  

 1
1 2

1 12

( | )
( , ,..., ) ( )

( | )

n n
i

n i

i ii

p X C
L X X X L X

p X C= =

= =∏ ∏  (9) 

 

 
 
Fig. 4. Hyperplane separating two classes. In the input space, data in two classes 

(triangles and diamonds) cannot be linearly separated. When mapping into the feature 

space by a kernel function, these two classes are separated by a hyperplane in a high 

dimensional space.  

2.2.4.  Support vector machine 

Support vector machine (SVM) classifiers map input data nonlinearly 

into a high dimensional feature space and separated by a hyperplane into 

two classes [13] (Fig. 4). Given a number of training samples belonging 

to two classes, a support vector machine constructs a hyperplane or set of 
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hyperplanes in a high dimensional space. Intuitively, a good separation is 

achieved by selecting the hyperplane that separates the two classes but 

adopts the maximal distance from any one of the given samples, since 

the larger the margin is the lower the generalization error of the classifier 

for unknown samples is. The application of a kernel function allows the 

algorithm to fit the maximum-margin hyperplane in a transformed 

feature space. There are mainly three common types of kernel functions. 

Given the feature vectors (xi and xj) of two samples, kernel functions 

transform the distance between them. 

(a) Polynomial function:  

 ( ) ( ), 1
n

T

i j i j
K x x x x = +   (10) 

(b) Gaussian radial basis function (γ > 0 is a parameter):  

 ( )








−−

=

2

,
ji xx

ji exxK
γ

 (11) 

(c) Hyperbolic tangent function (v and c are parameters):  

 ( ), tanh( ( ) )T

i j i j
K x x v x x c= +  (12) 

Polynomial kernels are well suited for problems where all training data 

is normalized. The default recommended kernel function would be the 

radial basis function. The hyperbolic tangent kernel is also known as the 

sigmoid kernel, which comes from the neural networks field. 

2.2.5.  Random forest 

Random forest is an ensemble classifier that consists of a bagging of un-

pruned decision trees with a randomized selection of features at each 

split, and outputs the class that is the majority vote of the classes output 

by individual trees [14]. Generally speaking random forest can improve 

prediction accuracy over a single decision tree. Random forest consists 

of two stages of randomization. The first stage is the randomization 

through bagging or bootstrap aggregation, which creates new training 

sets by randomly sampling a given set of samples with replacement. The 

second randomness is to select a random subset of features for each split 

when building an individual tree.  
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To construct a random forest, the following steps are employed (Fig.  

5). An individual classification tree is developed on a bootstrap sample. At 

each node in the tree, the split is selected on the randomly chosen subset of 

features. The tree is grown to full size without pruning. These two step are 

repeated for n times for n trees to construct a forest. The ensemble 

classification label is a majority vote of the prediction from all the trees.  

 

 
 
Fig. 5. A flowchart of a random forest model. Each decision tree is trained on a subset of 

the whole data set, which is chosen by random sampling with replacement. In each tree 

classifier, a random subset of the features is selected at each split. The final output class 

of the forest is selected by the majority vote of the classes output by all n trees. 

 

2.3. Model validation and evaluation 

When a classification model is built using one of the algorithms 

introduced above, it requires a golden standard dataset to validate and 

evaluate how well the constructed model works. The golden standard 

dataset consists of well-labeled samples, which are divided into a 

training set and testing set. For model validation, there are three methods 

that are commonly employed to judge the performance of classification 
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models. They are k-fold cross-validation, leave-one-out cross-validation, 

and independent tests. In the k-fold cross-validation, a sample set is 

randomly partitioned into k subsets of equal size. Of the k subsets, one 

subset is retained as the validation dataset for testing the model, and the 

remaining k-1 subsets are used for training. The cross-validation process 

is then repeated k times with each of the k subsets used exactly once as 

the validation data. The k results from all rounds are finally averaged to 

generate a single estimation metric. Leave-one-out cross-validation 

(LOOCV) uses a single instance in the sample set for testing while the 

remaining instances are used as the training data. This is repeated so that 

each instance in the sample set is used once as the validation data. This is 

the same as a k-fold cross-validation with k being equal to the number of 

instances in the original sample set. Leave-one-out cross-validation is 

computationally expensive when the number of samples in the training 

set is too large. In order to test the model in an unseen sample set, an 

independent test will be adopted. Independent test is conducted on a 

dataset which is independent from the training set. Thus, it is mimicking 

the actual scenario of prediction.  

In order to assess the classification performance, various performance 

criteria are defined: 

 =e
+

R
TP

T
all

P
c

FN
 (13) 

 
TN

Specificity
TN FP

=
+

 (14) 

   
FP

False positive rate
TN FP

=
+

 (15) 

 Precision=
+

TP

TP FP
 (16) 

 1

2 Re Pr
F =

Re +Pr

call ecision

call ecision

× ×
 (17) 

where TP is the number of correctly predicted positive samples, TN is the 

number of correctly predicted negative samples, FP is the number of 
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negative samples wrongly predicted as positives and FN is the number of 

positive samples wrongly predicted as negatives. 

The receiver operating characteristic (ROC) curve is a plot of the 

sensitivity (also called as recall) versus (1-specificity) for a binary 

classifier at varying thresholds. The area under the curve (AUC) can be 

used as a threshold-independent measure of classification performance. 

Alternatively, the precision-recall (PR) curve can be used, which plots 

recall relative to precision for a binary classifier at varying thresholds. 

3.  Application to human PPI data  

3.1.  Background of human PPI and biological problem statement 

Most of cellular functions are carried out through protein interactions. 

PPI data identifies interactions of proteins in a cell, which can provide 

insights into mechanisms that underlie human diseases. PPI data may 

also lead to new drug development to prevent the diseases. Since the 

current human PPI map is estimated to be far from complete [4], there is 

a strong need to increase the coverage of the human interactome by 

classifications (also called predictions here). In the last decade, the high 

throughput experimental technologies such as the yeast two hybrid (Y2H) 

assay and targeted mass spectrometry are employed to investigate 

protein-protein interaction networks in a whole organism scale [15]. 

However, it is pointed out by some researchers that these high-

throughput experimental methods have high false positive rates, and 

analysis of the high-throughput datasets has shown that they do not 

overlap much with each other [16, 17]. Accurate computational methods 

are therefore necessary to complete the interactome, which will 

compensate time-consuming and expensive experimental methods for 

identifying PPIs. Here, using recent works on PPI data as examples, we 

will see how classification techniques are used in practice. The methods 

capture observed features of interacting proteins and are applied to 

predict novel interactions between protein pairs. Note that although PPIs 

are dynamic and are often condition-specific, these methods classify PPIs 

as interact or non-interact pairs in a static manner. 
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Table 1. The list of public databases of protein-protein interactions (the numbers were 

obtained on Sep, 2012). 

Database 

name  

Number of 

organisms 

Number of  human PPI  URL 

BioGRID 39 75096 (physical interaction) http://thebiogrid.org/ 

DIP 504 4794 http://dip.doe-mbi.ucla.edu/dip/ 

HPRD 1 39194 http://www.hprd.org/ 

IntAct  186 4578 (direct interaction) http://www.ebi.ac.uk/intact/ 

MINT 30 (main) 26700 http://mint.bio.uniroma2.it/ 

 

3.2.  Human PPIs databases 

Currently known human PPIs are collected in several databases (Table 1), 

which are curated from the experimental data and primary biomedical 

literature. The Biological General Repository for Interaction Datasets 

(BioGRID) [18] is a public database that collects genetic and protein 

interaction data from model organisms and humans. The Database of 

Interacting Proteins (DIP) [19] contains experimentally determined 

protein-protein interactions of a large number of organisms. The Human 

Protein Reference Database (HPRD) is a database which integrates the 

information of protein functions and interaction of human proteins [20]. 

IntAct [21] is an open-source protein interaction database, where the 

source code and data are freely accessible. The Molecular INTeraction 

database (MINT) [22] is a public repository focusing on PPI data reported 

in peer-reviewed literature. The interaction data contained in these 

databases are mainly between soluble proteins. Thus, they should be used 

with caution if interactions between membrane proteins are to be predicted. 

3.3.  Datasets for computational study of PPIs 

Known PPIs in these databases are used for training classification 

methods. To build a method that can reliably classify protein pairs into 

interacting or non-interacting, we need two datasets, a positive dataset 

that contains known interacting protein pairs and a negative dataset that 

consists of non-interacting protein pairs. 

To construct a positive dataset, known interacting protein pairs are 

extracted from some or all of the aforementioned databases. Duplicate 

interactions from different databases will be deleted. Constructing a 

negative dataset is not as trivial as a positive dataset, because it is often 
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difficult to distinguish protein pairs that are actually interacting with each 

other but not yet detected by current experiments from pairs that are truly 

not interacting. The first strategy to construct a negative set is to randomly 

select protein pairs that are from different sub-cellular locations so that 

they are unlikely to physically encounter in a cell [23]. Because the 

probability that two randomly selected proteins physically interact is low, 

another approach taken is to randomly pair any two proteins from the 

positive data set excluding pairs that are actually known to interact  [24]. 

There is a database named Negatome [25], which contains lists of 

experimentally supported non-interacting protein pairs by manual curation 

of literature and from analysis of protein complexes with known 3D 

structure. The database contains 1291 and 809 non-interacting pairs, 

respectively. 

3.4.  Protein features used for predicting PPIs 

A prediction method for PPI considers features of known interacting 

proteins (from a positive dataset) and known non-interacting protein 

pairs (from a negative dataset) to build (train) a model. It is a binary 

classification problem of protein pairs, either to interacting or non-

interacting. Features used in existing studies include orthologous 

relationship to known interacting proteins in another organism (called 

interolog [26]). This is an effective strategy because protein interactions 

are often conserved among highly diverged organisms ranging from the 

model plant Arabidopsis thaliana to humans. Gene co-expression data 

can be also used for predicting interacting proteins because expression 

profiles of interacting proteins simultaneously rise and fall in different 

conditions and cell types. Detecting known interacting domains in 

protein pairs is another strategy to predict their interaction. Functional 

similarity measured by semantic similarity (which indicate how similar 

two terms are based on their semantic properties) of Gene Ontology 

(GO) terms is based on the fact that interacting proteins may function in 

the same biological process or at the same subcellular location. Some PPI 

prediction methods exploit comparative genomics features, such as 

conserved gene orders, gene fusion and  phylogenetic profile similarity 

(i.e. co-occurrence or co-absence of genes in multiple genomes) [27]. 

Below we discuss three methods using different combination of features 

and classifiers for integrative analysis and prediction of human PPIs. 
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3.5.  Case studies on human PPI prediction 

We review three examples of application of classification methods for 

predicting PPIs in human. The first work [28] used a naïve Bayesian 

model to integrate four types of features to predict PPIs in human. The 

second report [17] improved over the first one by using more relevant 

features and a semi-naïve Bayesian model, which combined dependent 

features together to construct a naïve Bayesian model. The third paper 

[16] employed an active learning strategy to guide the selection of 

training data, which was shown to improve prediction accuracy. The 

detail comparison of these three case studies is summarized in Table 2.  

 
Table 2. Methodological differences among three case studies. 

 

Difference Rhodes et al. [28] Scott et al. [17] Mohamed et al. [16] 

Positive 

Dataset 

11,678 PPIs in 

HPRD 

26, 896 PPIs in HPRD 14, 600 PPIs in 

HPRD 

Negative 

Dataset 

A localization-

derived negative 

dataset  

A randomly-generated 

negative dataset, and a 

localization-derived 

negative dataset 

A randomly-

generated negative 

dataset 

Model  Naïve Bayesian Semi-naïve Bayesian Active Learning and 

Random Forest 

Features interolog, 

correlation of 

gene expression, 

the number of 

shared biological 

process GO terms, 

and the domain 

enrichment ratio 

correlation of gene 

expression, interolog, 

sub-cellular localization, 

co-occurrence of specific 

InterPro and Pfam 

domains, co-occurrence 

of post-translational 

modifications, presence 

of disorder regions, and 

local network topology of 

PPI network 

GO terms in cellular 

component, 

molecular function, 

and biological 

process, co-

occurrence in tissue, 

gene expression, 

sequence similarity, 

interolog, and 

domain interaction 

Evaluation 

metrics 

False positive rate AUC of ROC Recall, precision, 

and F-score 
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3.5.1.  Application of naïve Bayesian model 

In a study by Chinnaiyan and his colleagues [28], four features were 

considered to predict PPI using a naïve Bayesian model. A naïve 

Bayesian model computes the probability that a pair of two proteins are 

interacting using each feature and multiplicatively combines the 

probabilities computed for different features. This multiplicative nature 

requires that the predictive data sets are conditionally independent or 

nonredundant. The four features they used were interolog (existence of 

homologous proteins that are interacting), correlation of gene expression, 

the number of shared biological process GO terms, and the domain 

enrichment ratio. The domain enrichment ratio is calculated as the 

probability of observing a pair of domains in a set of known interacting 

proteins divided by the product of the probabilities of observing each 

domain of the pair independently. The protein domains were taken from 

the InterPro database [29]. Biologically, these features have independent 

information, except for the last two features that are related to protein 

functions. To avoid bias from the two dependent features, the last two 

features were analyzed together.  

 

 

Fig. 6. The flowchart of data integration in a Naïve Bayes model to predict human 

protein-protein interactions (The figure is taken from [25] with permission from the 

journal). 
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Figure 6 shows the naïve Bayes model which combines the features 

mentioned above. First the authors calculated likelihood ratios (i.e. ratio of 

the probability that a protein pair is interacting over the probability that 

they are not) (Eq. 9) using each feature. For the interolog feature, human 

PPIs were predicted from the interaction data sets of three model 

organisms, Sacchromyces cerevisiae, Caenorhabditis elegans, and 

Drosophila melanogaster (Fig. 6, left branch). A confidence level of 

interolog assignments were classified by considering several parameters 

associated with predicted interactions, including the number of 

independent lines of evidence for a yeast PPI, confidence value of ortholog 

assignment, etc. Using these parameters, human protein pairs were 

classified into several confidence level bins using a decision tree (the step 

of stratifying predicted human PPIs in the figure). Then, Naïve Bayes 

model was constructed to predict whether a human protein pair interacts or 

not given the confidence level of the interolog assignment. If a human 

protein pair has interologs in two or more organisms, it will have multiple 

likelihood ratio from each of the PPIs. In such case, the maximal ratio was 

chosen from them (the last step of the PPI branch). 

For the gene expression features, human protein pairs are classified into 

bins by their correlation value of their expression level observed in each of 

the five expression data sets from different tissues (Fig. 6, second branch 

from the left). Then, similar to the interolog-based feature, the likelihood 

ratio of the gene expression-based feature was computed from each of the 

five expression data sets that contain the given protein pairs. If a protein 

pair appeared in multiple expression data, the maximum ratio was chosen.  

Since they found that the number of shared biological process GO 

terms and the domain enrichment ratio (two right branches in Fig. 6) were 

redundant, two features were binned together to compute the likelihood 

ratio. At last, the likelihood ratios were combined in a Naïve Bayesian 

model to generate composite likelihood ratios (LRcomp). 

They used a training dataset of 11,678 known human PPIs from HPRD 

and 3,106,928 non-interacting protein pairs in human. The trained model 

predicted 38,986 new PPIs that were not reported in HPRD at a false 

positive rate of 50% and 9,651 new PPIs at a false positive rate of 20%. 

The authors claimed that the false positive rate of this classification 

method is comparable to the results of high throughput experimental 

approaches in model organisms. 
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3.5.2.  Application of semi-naïve Bayesian model 

A drawback of applying naïve Bayes for PPI prediction is that it assumes 

independence of each feature; however, often some features are closely 

related. If features considered in a model are independent, the likelihood 

ratio can be calculated as the product of the individual likelihood ratios 

(naïve Bayesian model, Eq. 9). On the other hand, if features are not 

independent, all possible combinations of all states of these features must 

be considered, which can be very computationally intensive (Eq. 8).   

The semi-naïve Bayesian model is addressing the drawback of naïve 

Bayesian model by explicit combination of related features (Eq. 8) while 

handling independent features (Eq. 9) in the same way as the naïve 

Bayesian model. In a study by Barton and his colleagues [17], the semi-

naïve Bayesian model is used for human PPI prediction using seven 

features: correlation of gene expression, interolog, sub-cellular localization, 

co-occurrence of specific InterPro [29] and Pfam [30] domains, co-

occurrence of post-translational modifications, presence of disorder 

regions, and local network topology of PPI network. The local PPI 

network topology measure reflects the fraction of commonly interacting 

proteins for a pair of proteins. The sub-cellular localization, protein 

domain co-occurrence, and post-translational modification co-occurrence 

are integrated into one combined module because considering all their 

combinations (dependencies) between them achieved a higher accuracy. 

That is, the joint probability of all possible combinations of the four 

localization bins, five chi-square domain-co-occurrence bins, and four 

post-translational modification co-occurrence score bins, was computed. 

The rest of four features and the combined module were considered to be 

independent and integrated in the naïve Bayesian classifier (Fig. 7).  

For training and testing, 62,322 human protein sequences were 

downloaded from the International Protein Index (IPI) database [31]. 

Among these proteins, 26,896 distinct human protein interactions were 

identified as the positive dataset from HPRD. Of the 62,322 human 

proteins, 22,889 human proteins were referred to as the Informative 

Protein Set (IPS) since they were characterized by at least one of the 

features mentioned above. Two types of negative datasets were 

constructed. The first type of negative dataset was generated by selecting 
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protein pairs at random from IPS. The second type of negative dataset was 

created by selecting protein pairs from IPS for which the HPRD annotates 

them in two different subcellular locations. The localization-derived 

negative trained classifier tested on sets containing localization-derived 

negatives achieves a lower accuracy than that of the random negative 

trained classifier tested on a test set containing randomly-generated 

negatives. This is most likely due to the fact that the localization-derived 

negative trained predictor cannot sample the whole protein pair space well. 

Their model predicted 37,606 human PPIs, of which 32,892 were not 

reported in other publicly available large human interaction datasets. The 

newly discovered interactions thus considerably increased the coverage of 

the human interaction map. 

 

 
 
Fig. 7. Overview of semi-naive Bayesian. The variable Y (class label) is dependent on the 

observed variables, i.e. E(Expression), I(Interolog), C(Combined), D(Disorder) and 

T(Topology), which are treated as independent variables. In the combined module C, 

localization, domain co-occurrence, and post-translational modification co-occurrence are 

considered to be dependent on each other.  

3.5.3.  Application of Active Learning and Random Forest 

Experimentally verified protein-protein interactions are expensive to 

obtain; therefore, it would be useful to develop strategies to minimize the 

number of labeled samples required in the supervised learning task. In 
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comparison to passive learning models (labels of training sample are 

known prior to training) introduced in the sections above, active learning 

is allowed to request the label of any particular input sample in the 

training data. Active learning is a type of iterative supervised learning in 

which the system selects most informative samples each time to obtain 

their labels from a large pool of samples. Sampling will be repeated until 

the obtained samples in the training set are both plentiful and 

representative to construct a classification model with satisfied 

performance. The benefit of active learning is to substantially reduce the 

number of labeled samples required, making the training of a 

classification model more practical. 

In active learning, ideas of selecting informative training data include 

density based sampling, where samples to be selected are distributed on 

clusters in proportion to the cluster size; uncertainty sampling, where 

samples to be selected are those which are mispredicted using current 

classifier; estimated-error reduction, where samples that would generate 

maximal error reduction to the classifier are selected. Here, we provide 

details of density based and uncertainty based (random seed) sampling 

techniques. 

(1)  Density based sampling 

The samples are clustered by a K-means clustering algorithm. Labels 

are requested for a fixed number (M) of samples in each iteration. The 

selected samples are distributed across the clusters in proportion to the size 

of the cluster. Let ni be the number of samples in cluster Ci, and N be the 

total number of all samples. Then, mi , the number of samples to be 

selected from cluster Ci is given by  

 

 * /
i i

m M n N=  (18) 

and,  

 
1

K

i

i

M m
=

=∑  (19) 

In each cluster Ci, the algorithm selects mi unlabelled samples closest to 

the centroid, and assigns labels on them [16].  
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(2) Uncertainty based sampling 

In this strategy, the samples, whose labels are asked, are randomly 

selected in the first iteration. For example, a random forest is employed to 

construct the model with the selected samples. In the following iterations, 

the samples selected for labeling are those which have maximum 

disagreement among the decision trees in the random forest. The entropy 

(confusion) in labeling the sample is measured as  

 
(0,1)

log( )
i i i

i

e p p
∈

= − ∑  (20) 

where, p0 is the fraction of decision trees in the random forest that label 

the samples as negative ones, and p1 is the fraction of decision trees that 

label the samples as positive. 

In each iteration, a fixed number of samples with the maximum 

confusion are selected and their labels are obtained. A new random forest 

is trained from the expanding number of samples for selecting the samples 

with maximal confusion in the next iteration. 

 In a work by Ganapathiraju and colleagues [16], 14, 600 interacting 

protein pairs were downloaded from HPRD and a set of 400, 000 non-

interacting protein pairs were randomly generated. Features used to 

characterize protein pairs were GO terms in cellular component category 

(1), GO terms in molecular function category (1), GO terms in biological 

process (1), co-occurrence in tissue (1), gene expression (16), sequence 

similarity (1), interolog (5), and domain interaction (1). The numbers in 

parentheses show the number of different features in the same category.  

Not all types of features were available for each protein pair. A 

homogenous subset of data was built such that every pair had more than 

80% feature coverage, which resulted in a total of 55,950 protein pairs for 

use in the training and testing. 

In order to test the active learning model, training samples were 

selected using different active learning sample selection strategies as 

described above. Random forest was used for classification. Since some of 

the 27 features are obviously redundant with each other, a randomly 

reduced set of features were used to build each decision tree in the random 

forest. In their work, 20 decision trees were constructed. To split the nodes 
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of the decision trees, a subset of seven feature elements were randomly 

selected from the total of 27 elements. Of the seven selected features, the 

feature that offered the maximal information gain (Eq. 2) was used to split 

each node. 

It was shown that using active learning to select training data achieved 

higher accuracy than the model trained on randomly selected training 

samples without active learning. The best model achieves an F-score 

(harmonic mean of recall and precision) of 60% at 3000 labeled samples, 

with a recall of 51% and precision of 73%. The F-score dropped to 50% 

when active learning was not used (instead, training data were selected 

randomly). It was demonstrated that active learning enables better learning 

with less labeled training data. 

4.  Conclusions 

Data classification is the form of data analysis for extracting models 

describing important data classes, and predicting a predefined class to 

which a given sample belongs. Five well known algorithms were 

introduced in this chapter. There are also a number of other methods, 

which are gaining increasing popularity in the data mining and 

bioinformatics fields. These methods include genetic programming-

based algorithms [32] and fuzzy set algorithms [33]. Classification and 

prediction based on classification of known data is an indispensable step 

for understanding and using a large scale data. With applications to 

human PPIs discussed here, classification models have increased the 

coverage of the human interactome. Moreover, classification techniques 

have been applied for other various types of biological and medical data 

to discover novel knowledge from them. 
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