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Figure 1: Salient critical points (the blue, red, and green points are minimum, maximum, and saddles, respectively). (a) The back of the lion
head model with large noise and small hair textures, and the corresponding mean curvature visualization. (b) The mean curvature function
yields 7,629 critical points due to the curvature function’s sensitivity to noise. (c) The corresponding mesh saliency. (d) Salient critical points
with lower number. Since mesh saliency in (c) captures the hair texture and negates the noisy curvature in (a), our method based on saliency
selects the more interesting critical points in the important region. In color images shown in this paper, warmer colors (reds and yellows)
show high curvature or saliency and cooler colors (blues) show low curvature or saliency.

Abstract

A novel method for extracting the salient critical points of meshes,
possibly with noise, is presented by combining mesh saliency with
Morse theory. In this paper, we use the idea of mesh saliency as a
measure of regional importance for meshes. The proposed method
defines the salient critical points in a scalar function space using a
center-surround filter operator on Gaussian-weighted average of the
scalar of vertices. Compared to using a purely geometric measure
of shape, such as curvature, our method yields more satisfactory
results with the lower number of critical points. We demonstrate
the effectiveness of this approach by comparing our results with the
results of the conventional approaches in a number of examples.
Furthermore, this work has a variety of potential applications. We
give a direct application to the hierarchical topological represen-
tation for meshes by combining the salient critical points with the
Morse-Smale complex.

Keywords: critical points, saliency, Morse theory

1 Introduction

*e-mail: liuyushen00 @ gmail.com
fe-mail: {1iu66, dkihara, ramani } @purdue.edu

Morse theory is a powerful mathematical tool for determining the
topology of a manifold from the critical points of one suitable
scalar function on the manifold. Recently, discrete Morse theory
[Banchoff 1970; Edelsbrunner et al. 2003] on a triangulated mani-
fold has also became an active research area in computer graphics
and computational geometry using different real scalar functions
[Edelsbrunner et al. 2003; Bremer et al. 2004; Dong et al. 2006;
Natarajan et al. 2006; Ni et al. 2004]. In discrete Morse theory,
extracting the critical points of 3D meshes is an important prob-
lem. However, a poor choice of this real function can lead to a
complex configuration of a high number of critical points due to
noise. In addition, some salient critical points on important regions
might also be missed when some methods of smoothing (or fairing)
Morse function are used. Recently, mesh saliency [Lee et al. 2005],
as a measure of regional importance for meshes, has been derived
from 2D image techniques. In this paper, we focus on the problem
of how to extract the salient critical points of meshes by combining
mesh saliency with Morse theory.

Morse theory, which was originally devised for smooth functions on
manifolds, connects the differential geometry of a surface with its
algebraic topology. Morse theory has been extended to piecewise
linear functions on triangulated meshes [Banchoff 1970]. Given a
real-valued function over some shape, discrete Morse theory de-
scribes the connectedness of the shape from the configuration of
the points where the function’s gradient vanishes, its so-called crit-
ical points (e.g. minima, maxima, saddles). Extracting the critical
points of 3D meshes is an important problem in discrete Morse the-
ory. Some applications are strongly dependent on the quality of the
critical points, such as quadrilateral remeshing [Dong et al. 2006]
and surface segmentation [Natarajan et al. 2006]. However, there
are still two problems in extracting critical points from meshes due
to noise. One problem is that a poor choice of Morse function can
yield many more critical points due to the scalar function’s sensitiv-
ity to surface noise [Ni et al. 2004]. Figure 1(b) shows an example
for the lion head model with large noise, in which a mean curvature



function yields 7,629 critical points. These extra critical points are
caused by the poor curvature function’s sensitivity to noise and hair
textures on the back of this model. The other problem is that some
salient critical points in important regions might be missed when
some smoothing methods are used. For example, when the isotrop-
ically smoothing Morse function is used for this goal, some salient
critical points might be diffused and skipped.

There are several methods for resolving the above two problems, in-
cluding directly smoothing the surface, simplifying the topology by
cancelling pairs of critical points [Bremer et al. 2004; Edelsbrunner
et al. 2003], and smoothing the Morse function using the Laplacian
operation in the scalar function space [Dong et al. 2006; Ni et al.
2004]. Directly smoothing the original surface will change the sur-
face and destroy the original surface position. Topology simplifying
needs to build the persistence [Edelsbrunner et al. 2002] and hier-
archy [Bremer et al. 2004; Edelsbrunner et al. 2003], which require
the expenditure of large amounts of time and space if the number
of vertices on the meshes is gigantic. The method of smoothing
the Morse function leapfrogs this persistence organization and re-
moves unwanted critical points in a single step. Ni et al. [2004] use
the Laplacian operator for smoothing the Morse function to cancel
many unnecessary critical points. Dong et al. [2006] apply their
work to surface remeshing. Laplacian smoothing can get a lower
number of critical points, but it is hard to extract the salient crit-
ical points in some interesting and important regions. Laplacian
smoothing is isotropic, and therefore it also diffuses shape features
in the scalar function space and might skip some salient critical
points when smoothing the Morse function occurs. Furthermore,
Ni et al.’s method needs to solve eigenvectors for a linear system of
Laplace equation to find a smooth Morse function. Solving a num-
ber of eigenfunctions requires the expenditure of large amounts of
time, if the number of vertices for a mesh is gigantic even though
multi-resolution techniques are used [Ni et al. 2004]. In this paper,
we follow some ideas from Ni et al.’s works [Ni et al. 2004] us-
ing mesh saliency instead of Laplacian smoothing. In contrast, our
method uses an iterative strategy instead of solving eigenvectors for
a linear system of Laplace equation.

The purpose of the saliency map is to assign a saliency value to each
image pixel, which is introduced in 2D image processing. More re-
cently, it has been extended to 3D mesh processing in different ways
(e.g. Refs. [Gal and Cohen-Or 2006; Lee et al. 2005; Yamauchi
et al. 2006]). Based on the theory of saliency of visual parts, Gal
et al. [2006] propose a method for defining the salient geomet-
ric features for partial shape matching. Lee et al. extend the 2D
saliency map to 3D meshes through the center-surround operation
on Gaussian-weighted mean curvatures, and apply mesh saliency to
mesh simplification and view selection. Yamauchi el al. combine
similarity and Lee et al.’s saliency approaches for selecting stable
and salient representative views of 3D shapes. Since the algorithm
of mesh saliency proposed by Lee et al. [2005] is simple, fast, and
well feature-preserving in the scalar function space, it is a potential
choice for extracting the critical points. In fact, Lee et al.’s mesh
saliency computation is a geometry filter (smoothing) operation in
terms of the mean curvature used with the center-surround mech-
anism. For combining saliency maps at different scales, the final
mesh saliency is computed by applying the non-linear normaliza-
tion of suppression to all scales.

Our approach is built on the technique of mesh saliency proposed
by Lee et al. [2005]. In some sense, our algorithm can be consid-
ered an application of mesh saliency based on Lee et al.’s algorithm
[Lee et al. 2005]. We call the extracted critical points based on
mesh saliency salient critical points. We also find that the original
mesh saliency algorithm can not provide the best results for our ap-
plication in extracting critical points. In this paper, we explore the
improved method for meshing saliency for different models pos-

sibly with small or large noise. Our improved method combines
the different anisotropic bilateral filter operation [Fleishman et al.
2003; Jones et al. 2003], and an iterative procedure. Our strategy
can bring the salient critical points in important regions with the
lower number. In addition, our saliency method is suitable for most
scalar functions, such as geodesic and atomic density [Natarajan
et al. 2006], in addition to curvature and height functions. The di-
rect application of our method is a hierarchical topological repre-
sentation for meshes by combining the Morse-Smale complex.

2 Background

In this section, we review the necessary background about critical
points and mesh saliency.

2.1 Critical Points

Let M denote a compact 2-manifold without boundary and f: M —
R denote a real-valued smooth function on M. Supposing a local
coordinate system at a point p € M, point p is critical if the gra-
dient of p vanishes; otherwise, it is regular. In general, critical
points are classified as maxima (f decreases in all directions), min-
ima (f increases in all directions), and saddles (f switches between
decreasing and increasing four times around p).

In this paper, we only consider that M is a triangulated mesh pos-
sible with noise. Ni et al. [2004] have extended Morse theory to
meshed manifolds with boundary. Here f is a piecewise-linear real
function. Its values are defined on the vertices of the mesh M, and
linearly interpolated within the edges and triangles of the mesh.
Typically, we also call f the Morse function of M. Suppose each
edge (vi,vy) € M that f(v|) # f(v2). Therefore, the gradient is
constant, non-zero, and well defined across the interiors of the faces
and edges; critical points occur at the vertices [Ni et al. 2004]. The
degenerate flat edge limitation can be overcome by perturbation or
Conley index theory [Ni et al. 2004]. We follow the general method
[Banchoft 1970; Ni et al. 2004] using one neighborhood for defin-
ing the local neighborhood of a vertex v € M. A vertex is labelled
a maximum/minimum if its function value is higher/lower than that
of its neighbors, regular if its lower neighbors form a connected
chain, and a saddle, otherwise.

2.2 Mesh Saliency

Lee et al. [2005] introduced the idea of mesh saliency as a measure
of regional importance for graphics meshes, and explored the appli-
cations of mesh saliency to mesh simplification and view selection.
The basic idea is to filter the curvatures of vertices in meshes using
a center-surround operator on Gaussian-weighted mean curvatures.
We first summarize the algorithm of mesh saliency as follows.

1. Compute the curvature of each vertex v € M using Taubin’s
method [Taubin 1995]. Let €’(v) denote the mean curvature
of v.

2. Compute the Gaussian-weighted average of the mean curva-
ture at each vertex v as follows:

Y C(x)exp[-[x—v|*/(20%)]
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where N(v, o) denotes a neighborhood for a vertex v and in-
cludes the set of vertices within a distance ¢ with v.

3. Compute the saliency .#(v) of a vertex v as the absolute dif-
ference of the Gaussian-weighted average (i.e. Eq. (1)) be-
tween fine and coarse scales:

Z(v) =1G(€(v),0) = G(%(v),20)|. @

4. The final mesh saliency is computed by adding the saliency
maps (i.e. Eq. (2) ) at five scales after applying a non-linear
normalization of suppression.

The mesh saliency algorithm is essentially an anisotropic filter or
smoothing operation for the mean curvature function. Our goal is to
improve the mesh saliency algorithm for applying to critical points
extraction.

3 Salient Critical Points

3.1 Disadvantages of Mesh Saliency

By testing some examples, we find that the original mesh saliency
algorithm can not offer the best results in our application for ex-
tracting critical points. By analyzing the original algorithm, we
find two disadvantages for our application.

One disadvantage is that Eq. (2) might make the same saliency for
two opposite and symmetric vertices because of using the absolute
difference between the Gaussian-weighted average. For instance,
the standard example in Morse theory is the height (e.g. z coordi-
nate) function over a torus standing on its side. In this case, there
are one maximum and one minimum in the outer ring, and two sad-
dles in the inner ring. Suppose the torus is centered at the original
point with a height of 2h; the maximum () and minimum (—#%)
have the opposite height value and the same neighborhood struc-
ture. However, the saliency values of the two vertices are same if
using the absolute difference in Eq. (2). Similarly, more incorrect
critical points are introduced because of the symmetry of the torus,
where the lowest point is incorrectly classified as maximum. There-
fore, the use of the absolute difference in Eq. (2) is not appropriate
for extracting the critical points of a 3D mesh because it will change
the type of critical points.

The other disadvantage is that Step 4 is difficult for controlling the
number of critical points because it only combines saliency maps
of five scales. If the chosen scales are not appropriate, the Morse
function might be extremely non-smooth. For example, an inap-
propriate scale yields some extra critical points for a smooth torus
surface. Conversely, if more close scales are utilized in saliency
computation, over-smoothing might also occur, resulting in some
salient critical points being missed. Ni et al. [2004] solve a relaxed
form of Laplace equation to find a smooth Morse function with a
user-controlled number of critical points. It is non-trivial to build a
similar equation system for Gaussian operation. To overcome this
problem, we use an anisotropic smoothing operation with an itera-
tive procedure instead of using five scales and solving an equation
system. The saliency of critical points is preserved by an appropri-
ate anisotropic filter operation, and the number of critical points is
controlled by the iterative number. The more the iterative number,
the less the number of salient critical points. We will introduce the
improved algorithm in the next sections.

3.2 Anisotropically Smoothing Morse Function

Filtering is a fundamental operation of image processing and com-
puter vision. It means that the value of the filtered image at a given
location is a function of the values of the input image in a small
neighborhood of the same location. Similarly, we can regard the
Morse function value of a vertex on a mesh as the gray value of a
pixel in an image, and the connective neighborhood of the vertex as
the neighborhood of the pixel. A part of the research in this paper is
an extension from image smoothing to smoothing Morse function
on meshes.

Smoothing a Morse function with a Laplacian filter [Ni et al. 2004]
is an efficient technique for cancelling many pairs of unnecessary
critical points. However, this technique is isotropic, and therefore
has indiscriminately smooth noise and salient features, so this might
skip some salient critical points. The idea of our approach is to
modify the Laplacian diffusion equation to make it anisotropic. In
particular, the Gaussian filter used for computing the mesh salient
computes a weighted average of values in the neighborhood, in
which the weights decrease with the distance from the neighbor-
hood center. Alternatively, the bilateral filter, introduced by Tomasi
and Manduchi [1998], is another anisotropic filter derived from the
Gaussian filter, with a feature preservation term that decreases the
weight of pixels as a function of intensity difference. In this sec-
tion, we will describe the above smoothing operation of bilateral
filter for anisotropically smoothing the Morse function.

Similar to the second step in mesh saliency, we select the bilateral
filter operation [Fleishman et al. 2003; Jones et al. 2003] instead
of the simple Gaussian filter. We give the equation of the bilateral
smoothing operation for the real function f(v) on each vertex v as
follows:

X )f(X)Wc(IIX* vIDWs (I (x) = F(V)I)
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where the closeness smoothing filter is the standard Gaussian fil-
ter with parameter o, : W,(x) = exp[—x2/(262)], and a feature-
preserving weight function with parameter o, that penalizes large
variation in intensity is: W;(x) = exp[—x?/(262)]. Compared with
the Gaussian operation, the output of Eq. (3) on a vertex v is also
a weighted average of the surrounding vertices, but the weight de-
pends not only on the spatial distance ||x — v||, but also on the scalar
function difference |f(x) — f(v)|. The bilateral smoothing may be
regarded as an anisotropic filter consisting of two Gaussian oper-
ations both on the spatial distance ||x — v|| and the scalar function
difference | f(x) — f(V)].

3.3 Saliency Computation

Being different from Step 3 in mesh saliency, we do not adopt the
absolute difference between the Gaussian-weighted average of the
mean curvature as the vertex’s saliency. The disadvantage of the
absolute difference has been discussed in Section 3.1. We define
the saliency on a vertex v as the Gaussian-weighted average of the
scalar function difference between its neighboring vertices and v,
where the weight is similar to the weight in Eq. (3). By combining
the bilateral filter in Eq. (3), we also get the equation of saliency
computation:

L (fO) = FIWe(lx = vIDWs(If (x) = fF(V)])

. XEN(v,20)
S(f(¥),0)= L Wk W) 7D
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3.4 The Algorithm Implementation

In this section, we give the whole algorithm of extracting salient
critical points. First, we apply a bilateral filter to a single vertex
v for computing its saliency value s. After finishing the saliency
computation on all vertices, update the real function value on each
vertex v as: f = f +s. Finally, after several iterative saliency com-
putations, we utilize the computed saliency for extracting the crit-
ical points by Banchoff’s method [Banchoff 1970; Ni et al. 2004].
The following is the pseudo-code for the algorithm of extracting the
salient critical points:

Listing 1: The fundamental salient critical points extraction algo-
rithm.

Procedure SalientCriticalPoints(M, o, ireration);
Input:

M: the given mesh

o: the radius of the neighborhood

iterations : the number of iterations
Output:

salient critical points

Local variables:

N: the size of M

v;: the i vertex of M

fi: the real function value on v;

si: the computed saliency value on v;
begin
for (j=1 to iterations)

{vi}=vertices (M);

N=[{vi}|;

for(i=1 to N)

fi=function (v;);

s;=computate v;’s saliency using Eq.(4);
end

update vertices functions as: fi=fi+s;;
end

classify vertices using ClassifyVertex;
return extracting salient critical points;
end

The ClassifyVertex algorithm referred to in Listing 1 is a direct
implementation of vertex classification [Ni et al. 2004]. The types
of returning vertices in the algorithm include maximum, minimum,
and saddle. The reader may consult the reference (Section 3.1 in
[Ni et al. 2004]) for detailed expositions of the algorithm.

Parameters.  The parameters of the algorithm are: the radius
of neighborhood o, o, 0;, and the number of iterations. Similar
to Lee et al.’s strategy [Lee et al. 2005] for choosing the neigh-
borhood radius ¢, we choose ¢ = 8.0¢, where € is 0.3% of the
length of the diagonal of the bounding box of the model. We use
o, = o as the standard deviation of the Gaussian filter at distance.
In addition, we give two methods for choosing ¢;. One method is
that o is simply equal to 6.. The other method is that o is equal
to the maximal difference among real functions of vertices in the
neighborhood of a vertex. We have tried both and found that the
first method gives us better results, so we choose 6, = 05 = 0 in
our implementation. One may choose a large ¢ and perform a few
iterations, or choose a narrow filter and increase the number of iter-
ations. In all results shown in this paper, we use 10 to 20 iterations.
We find that a small number of iterations is sufficient and advan-
tageous both for the speed of computation and for the number of
salient critical points. Furthermore, we use a kd-tree to accelerate
the searching speed of points in a sphere with the radius ¢ and the
center at vertices of the mesh.

Table 1: Comparisons of time and the number of critical points.
Model Fig. #Verts #lters Time(s) o #CP

Lion 1(b) 24K - - - 7629
1(d) 24K 10 3.9 8.0e 493

Squirrel  3(b) 10K - - - 2864
3(d) 10K 20 14 8.0e 152

Protein  4(a) 8K 1 0.13 8.0e 741
4(b) 8K 10 0.63 8.0e 257

4 Results and Discussion

Critical points always depend on a Morse function f, which is a
real-valued function defined on a surface. The definition of the
Morse function for a more general surface is non-trivial, and it de-
pends closely on applications. If a different Morse function is used
as f, the critical points might change. There are many different
definitions for the Morse function. For instance, in terrain model-
ing applications, the height function has been a useful function f
[Bremer et al. 2004]. However, the height function is not invariant
to transformations such as object rotation. The curvature function
may provide invariance in a rotation, but it is sensitive to the noise
of the surface. For segmenting molecular surfaces, Natarajan et al.
[2006] chose an atomic density function. This paper does not fo-
cus on how to define new Morse functions. In all the results shown
in this paper, we adopt the mean curvature function as a Morse
function for testing the effectiveness of our method because of its
invariance in a rotation. We use Taubin’s method [Taubin 1995] for
curvature computation. In fact, any other Morse function can also
be suitable for our method.

We have implemented the algorithm of extracting salient critical
points as described in the previous section and applied it to some
models. The algorithm described above is implemented in C++.
The execution time is given in seconds on a Pentium IV 1.70GHz
processor with 512M RAM excluding the time of loading meshes.
This section investigates the effectiveness of our method by com-
paring our results with the results of the conventional critical points
extraction algorithm [Banchoff 1970; Ni et al. 2004], and the can-
celled critical points algorithm based on topological persistence and
simplification (TPS) [Edelsbrunner et al. 2002]. Finally, we also
give an example for showing a direct application to a hierarchical
topological representation.

Table 1 gives the time in seconds for some meshes referred to in
this paper, where “#Verts” is the number of vertices of the models,
“#lters” is the number of iterations, and “#CP” is the number of
critical points. In all the results shown in this section, we use 10
to 20 iterations. We found a small number of iterations is sufficient
both for the speed of computation and for the numerical stability.

Example 1 Comparisons with the conventional critical points ex-
traction algorithm [Banchoff 1970; Ni et al. 2004] (Refer to Fig-
ures 1, 2). The back of the lion head model includes large noise
and many small hair textures. The mean curvature function yields
many critical points due to the curvature function’s sensitivity to
noise (see Figure 1(b)). Our method based on mesh saliency can
filter some noise and capture the important features, and yields the
salient critical points in the more interesting region of hairs with a
lower number after 10 iterations, as shown in Figure 1(d)).

For showing the quality of critical points, we also illustrate the
topological segmentation of salient critical points using the Morse-
Smale (MS) complex. The MS complex [Edelsbrunner et al. 2003]



(a)

Figure 2: The MS complex comparison with the conventional crit-
ical points extraction algorithm. (a) The full MS complex of the
original model in Figure 1(b). (b) The MS complex corresponding
to Figure 1(d). Note our method generates a more simplified MS
complex due to the reduction of critical points.

is a cellular decomposition of a scalar function over a manifold, de-
fined formally as the refinement of its ascending manifolds by its
descending manifolds [Edelsbrunner et al. 2003; Dong et al. 2006].
The MS complex is a power tool, and has been applied to many
graphics techniques, such as topological simplification and hierar-
chy [Bremer et al. 2004; Edelsbrunner et al. 2002; Edelsbrunner
et al. 2003; Natarajan et al. 2006], cutting a surface into a Disk [Ni
et al. 2004], and surface quadrangulation [Dong et al. 2006]. Fig-
ure 2 gives the MS complex comparison corresponding to the lion
head model in Figure 1. The original MS complex (see Figure 2(a))
is too complex for some applications due to noise. Salient critical
points using our method can generate a more simplified and uni-
form MS complex (see Figure 2(b)). Our method can also serve for
the above applications, including surface segmentation [Natarajan
et al. 2006], cutting [Ni et al. 2004], and remeshing [Dong et al.
2006].

Example 2 Comparison with TPS (Refer to Figure 3). The algo-
rithm of topological persistence and simplification, i.e. TPS, is an
alternative method for cancelling critical points [Edelsbrunner et al.
2002]. In general, the persistence of a critical point pair is defined
as the absolute difference in the values of f between the two points
[Edelsbrunner et al. 2003]. Figure 3 gives an example for compar-
ing our method with TPS. A mean curvature function yields a mass
of critical points due to noise, and the full MS complex is gener-
ated in Figure 3(a). In Figure 3(b), the TPS method is used for
removing all critical points with persistence less than 0.1% of the
mean curvature range. Figure 3(c) shows the salient critical points
after 20 iterations using our method with the close number of crit-
ical points generated by TPS. Observe the difference in the area of
the left eye in Figures 3(d) and 3(e). Note that TPS still has some
critical points remaining around this area because of the high noise
points in this region with a persistence of more than 0.1%. Con-
versely, our method can only leave one salient critical point around
the same area.

Example 3 Hierarchical topological representation (Refer to Fig-
ure 4). The efficient construction of topologically simplified mod-
els is an important problem in computer graphics and geometric
modeling [Edelsbrunner et al. 2002]. Its goal is to remove topo-
logical noise and leave the topological features. Edelsbrunner et
al. [2002] formalized a notion of topological simplification within
the framework of a filtration, and presented a topological simplifica-
tion algorithm based on persistence. Based on the proposed persis-

tence computation algorithm for cancelling pairs of critical points,
Edelsbrunner et al. [2003] built hierarchical MS complexes for sim-
plifying the topological structure of piecewise linear 2-manifolds.
Similar to their work, our method can also provide a hierarchi-
cal topological representation for meshes at each different iterative
level by combining the MS complex. The difference between our
method and the method based on cancelling critical pairs is that our
smoothing process naturally gives the hierarchical critical points.
The set of MS complexes at different iterations introduces a hier-
archical topological representation for meshes. The proposed hi-
erarchical topological structure based on salient critical points and
iterations can be regarded as a beneficial supplement of the known
algorithms. Figure 4 shows a hierarchical example of a molecular
surface including 1, 5, and 10 iterations. In this example, we use the
structure of an enzyme, phospholipase A2 (Protein Data Bank code:
2bp2). Enzymes carry out their catalytic reaction on a local site of
the molecular surface. Therefore, developing a methodology for
segmenting a molecular surface in a biologically meaningful way
is very useful for characterizing and also predicting the function
of proteins. Detecting salient critical points is suitable for appli-
cation to protein surface, because fewer (hence larger) and signifi-
cant segments are obtained, which would be more tolerant to small
conformational changes of molecular surface due to the intrinsic
flexibility of proteins. Our method might move positions of critical
points after several iterations.

5 Conclusions

We have presented a simple, robust, and efficient algorithm for ex-
tracting the salient critical points on meshes by combining mesh
saliency with Morse theory. The basic idea of the proposed method
is first to assign a saliency value to each vertex of meshes as the
saliency map using the anisotropic bilateral filter, and then extract
the salient critical points using Morse theory. We also find that
the original mesh salient method can not be applied directly to our
method due to several drawbacks, so an improved iterative imple-
mentation of the proposed algorithm is provided. Our method is es-
sentially an anisotropic filter on the Morse function. In addition, we
compared our results with the results of the conventional methods,
and the comparisons show our method can offer more satisfactory
results, especially for the noisy meshes. Finally, we demonstrated
a direct application to a hierarchical topological representation for
meshes by combining the Morse-Smale complex.

The major drawback in our current implementation is that the num-
ber of salient critical points is dependent on the iteration number
and can not be accurately controlled. Ni et al. [2004] can control
the number of critical points by solving a linear Laplace equation
system. However, it is not easy to build a similar linear Gaussian
equation system and solve it effectively. In the future we plan to
explore research of the bounded number of critical points for the
Gaussian equation system. In some sense, the new method still has
the same drawbacks as the other iterative methods. That is, the
termination condition is hard to control. In our current implemen-
tation, the iteration number is the only condition for termination. In
the future work we plan to add the other termination conditions to
make our method more effective.
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Figure 3: Comparison with TPS of a squirrel model with light noise.
(a) A mass of critical points yielded by a mean curvature function,
and the full MS complex. (b) Cancelling some critical points using
TPS, and the simplified MS complex. (c) Salient critical points after
20 iterations using our method, and the corresponding MS complex.
(d) The magnified view of (b) on the left eye of the model. (¢) The
magnified view of (c). There is a close number of critical points in
both (b) and (c), where (d) has 141 critical points and (e) has 152
critical points.

Figure 4: A hierarchical topological representation for a molecu-
lar surface by combining our method with the MS complex. (a)
Salient critical points after one iteration and the corresponding MS
complex. (b) 10 iterations.
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