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ABSTRACT PROSPECTOR (PROtein Struc-
ture Predictor Employing Combined Threading to
Optimize Results) is a new threading approach that
uses sequence profiles to generate an initial probe-
template alignment and then uses this “partly
thawed” alignment in the evaluation of pair interac-
tions. Two types of sequence profiles are used: the
close set, composed of sequences in which sequence
identity lies between 35% and 90%; and the distant
set, composed of sequences with a FASTA E-score
less than 10. Thus, a total of four scoring functions
are used in a hierarchical method: the close (dis-
tant) sequence profiles screen a structural database
to provide an initial alignment of the probe se-
quence in each of the templates. The same database
is then screened with a scoring function composed
of sequence plus secondary structure plus pair inter-
action profiles. This combined hierarchical thread-
ing method is called PROSPECTOR1. For the origi-
nal Fischer database, 59 of 68 pairs are correctly
identified in the top position. Next, the set of the top
20 scoring sequences (four scoring functions times
the top five structures) is used to construct a protein-
specific pair potential based on consensus side-
chain contacts occurring in 25% of the structures.
In subsequent threading iterations, this protein-
specific pair potential, when combined in a compos-
ite manner, is found to be more sensitive in identify-
ing the correct pairs than when the original statistical
potential is used, and it increases the number of
recognized structures for the combined scoring
functions, termed PROSPECTOR2, to a total of 61
Fischer pairs identified in the top position. Applica-
tion to a second, smaller Fischer database of 27
probe-template pairs places 18 (17) structures in the
top position for PROSPECTOR1 (PROSPECTOR2).
Overall, these studies show that the use of pair
interactions as assessed by the improved Z-score
enhances the specificity of probe-template matches.
Thus, when the hierarchy of scoring functions is
combined, the ability to identify correct probe-
template pairs is significantly enhanced. Finally, a
web server has been established for use by the
academic community (http://bioinformatics.dan-
forthcenter.org/services/threading.html). Proteins
2001;42:319–331. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

Sequence-based approaches to functional annotation typi-
cally make functional assignments for 40–60% of the ORFS
in a given genome. An essential issue in the post-genomic era
is to develop methods that can assign the function of the
remainder of the ORFS, termed ORFans, about which noth-
ing is known. Because of their widespread use and success,
sequence alignment methods such as PSI-BLAST1,2 and
sequence motif (that is, local sequence descriptors) methods
such as Prosite,3 Blocks,4 Prints,5,6 and Emotif7 set the bar
for structure-based methods. However, sequence-based ap-
proaches increasingly fail as the protein families become
more diverse.8 Thus, an extension of these approaches, which
combines one-dimensional information about sequence and
structure, has been developed, with some success reported.9

An alternative structure-based approach to function predic-
tion that uses the sequence-structure-function paradigm has
been introduced recently.8,10–15 Here, models predicted by
threading are screened for matches to known active sites; if a
match is found, then a functional assignment is made. One
key to the success of this approach is to use the best
threading algorithm possible so that more distant cases can
be recognized. In this regard, the recent CASP3 results have
shown both the strengths and weaknesses of contemporary
threading algorithms. Based on insights obtained from
CASP3, our goal is to develop an improved algorithm that
makes better use of pair interactions in particular and to
demonstrate its efficacy on a number of standard bench-
marks, especially the Fischer databases.16

At this juncture, it is important to review the current
status of various threading approaches so that, in the
development of a new threading algorithm, we can exploit
their advantages while avoiding their pitfalls. All thread-
ing algorithms are essentially defined by three choices.
First, the nature of the interactions and the functional
form of the “energy” must be selected. For scoring func-
tions composed of a variety of terms, their relative weight
must be established. The type of energy terms considered
in the past has included the local burial status of residues,
secondary structure propensities or predicted secondary
structure as well as additional energy penalty terms16,17

(for example, terms that compensate for different protein
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lengths), and the inclusion of pair or higher-order interac-
tions. Contemporary algorithms often include an essential
term that is related to the sequence identity between the
template and the probe sequence.18 This evolutionary
component is designed to improve both the template
protein recognition ability and the quality of the predicted
structural alignment.16,19–22 Second, if pair interactions
are included, then the type of interaction centers must be
selected. Commonly used choices are the Cas,23,24 the
Cbs,25,26 the side-chain centers of mass, specially defined
interaction centers,27,28 or any side-chain atom.29 The
functional form of the pair energy ranges from contact
potentials29,30 to continuous distance-dependent poten-
tials25,31 to interaction environments.32 Third, given an
energy function, a search procedure that finds the optimal
alignment between the probe sequence and each struc-
tural template must be used. When all of the interactions
are local in nature (for example, a fitness score defined by
mutation matrices and secondary structure propensities),
then dynamic programming33 is the best choice. If a
nonlocal scoring function is used (pair interactions, for
example), then the key question is how the interactions are
updated in the template structure to reflect the probe
sequence. Some approaches use dynamic programming
with the “frozen” approximation (where the interaction
partners or a set of local environmental preferences are
taken from the template protein in the first threading
pass).29,34 This might be followed by iterative updat-
ing.29,32,35 Still other workers use double dynamic program-
ming, which updates some interactions recognized as
being the most important in the first pass of the dynamic
programming algorithm.25 Other variants evaluate the
nonlocal scoring function directly and search for the
optimal probe-template alignment by Monte Carlo27 or
branch-and-bound search strategies.28

It should be recognized that almost no search protocols
allow the actual template structure to adjust in order to
reflect the actual structural modifications in the probe
structure relative to that of the template. Algorithms such
as Monte Carlo and branch-and-bound strategies permit
the partner from the probe sequence found in the current
alignment to be used, but they do not allow the template’s
backbone structure to dynamically readjust to reflect the
probe sequence. Such readjustments might be quite impor-
tant when the probe and template structure differ substan-
tially, for example, when a template protein’s GLY is
replaced by the probe’s TRP. Unfortunately, this is pre-
cisely the realm in which threading would be expected to
be the most valuable as compared with pure sequence-
based methods.

In principle, the advantage of threading over pure
sequence-based approaches is that it uses structural rather
than evolutionary information. However, as evidenced by
CASP3, many of the successful fold-recognition ap-
proaches are pseudo one-dimensional in nature and use
evolutionary information (typically implemented in the
form of sequence profiles) plus predicted secondary struc-
ture. Furthermore, the evolutionary component contrib-
utes a significant fraction of the selectivity.36 Of the top

performing groups in fold recognition in CASP3, this type
of approach was typified by Jones et al.37 and Koretke et
al.22 Here, structure (in this case secondary structure)
played an ancillary role. Ota et al.38 also used a hierarchy
of local scoring functions to describe side-chain packing,
hydration, secondary structure, and hydrogen bonding.

Moving to approaches in which structure played a more
prominent role in CASP3, Domingues et al.39 used a burial
energy and the frozen approximation to evaluate pair
interactions. However, they used a single sequence rather
than sequence profiles; this represents a more structure-
based approach to threading, but all interactions are still
implemented at the pseudo one-dimensional level to en-
able the use of dynamic programming. Panchenko et al.40

was unique among the predictors in CASP3 in that they
explicitly treated interactions in a structural core identi-
fied on the basis of evolutionary conservation of the
structure across a protein family. In some sense, this
approach is closest to the original idea of threading; yet
they too use a PSI-BLAST sequence-profile component and
conclude that the combination of both sequence profiles
and contact potentials improves the success rate over that
when either term is used alone. Because they use a
nonlocal scoring function, dynamic programming cannot
be used to search for the best match of a sequence to a
given structure. Rather, a Monte Carlo search procedure is
used to search for the best sequence-structure fitness.
Such calculations take a considerable amount of computer
time; therefore, application of the method on a genomic
scale would require considerable computer resources. Fur-
ther, for the identification of the core, a number of struc-
tures in the protein family must be solved. Overall, the
general consensus is that progress was made in CASP3, with
improvement in alignment quality since CASP2.36,41,42 But,
as Murzin36 observed, threading “performs better on distant
homology recognition targets than on ‘pure’ folding recogni-
tion targets. This bias probably resulted from the implemen-
tation of ‘distant homology’ filters.”

Thus, techniques that extend the ability of threading
techniques to address “pure” fold recognition situations
are still required. But, as indicated in the work of Pan-
chenko et al.,18 the best results seem to occur when a
sequence-profile term is combined with threading poten-
tials. We proceed in this spirit by presenting the PROSPEC-
TOR method (PROtein Structure Predictor Employing
Combined Threading to Optimize Results), which shows
that pair interactions can improve the sequence-structure
specificity over that of sequence-profile terms used alone.
However, when multiple scoring functions are combined,
the resulting recognition ability is even larger. The organi-
zation of the presentation of this methodology in this
article is as follows. In the Materials and Methods section,
we describe the approach, the scoring functions, the way
pair interactions are updated, a methodology for using
consensus contacts in threaded structures to construct a
protein-specific pair potential that is used in a subsequent
threading iteration, and a new means of assessing the
quality of the predicted structures based on the signifi-
cance of the predicted contacts. Then, in the Results section,
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we present results for the 68 probe-template pairs of the
Fischer database, and a second database of 27 probe-
template pairs compiled by Fischer (http://www.doe-mbi.
ucla.edu/peopleFischer/BENCH/tablepairs2.html). Finally, in
the Discussion section, we summarize the results of the
present work and highlight future research directions.

MATERIALS AND METHODS
Background

During the course of developing PROSPECTOR, we
noticed that the sequence profiles generated from the
BLOSUM 62 matrix43 often provided quite reasonable
alignments between the probe and template, even when
the alignment score itself was insignificant (see also Table
IIIA). This suggested that the first stage of a hierarchical
threading approach should use a sequence profile44–46

(using a sequence profile plus a three-state secondary
structure prediction scheme gave worse results) to gener-
ate the initial alignment between the probe sequence and
the template structure. We call this the “partly thawed”
approximation because the resulting alignment of the
probe sequence in the template structure is used to
calculate the partners for the evaluation of the pair
interactions. That is, in all cases, the probe sequence itself
is used to evaluate the pair interactions.

Previously, in the first iteration of the frozen approxima-
tion,29 the partners were taken from the template struc-
ture. In practice, this worked well when the probe and
template structures had similar environments, but more
often than not the environments were quite different. For
example, the probe sequence might be entirely devoid of
any TRP, but in the frozen approximation, a given residue
might be forced to interact with a TRP from the template.
On successive iterations, in the so-called defrosted approxi-
mation where the partners were taken from the previous
alignment,29 there were times when the resulting align-
ments never converged. This resulted from the poor envi-
ronment provided by the initial frozen approximation that
selected the partners from the template.

A schematic overview of the entire threading approach
is shown in Figure 1. All alignments are generated using
dynamic programming. In the upper half of Figure 1, we
present PROSPECTOR1. It is a hierarchical approach
consisting of close (distant) sequence profiles that, for each
structure, generate the probe-template alignment to be
used in the evaluation of the pair interactions in the
second pass. A total of 20 structures (the four scoring
functions times five structures for each scoring function)
are reported, as are the consensus predictions. In PROS-
PECTOR2, we pool these structures and select consensus
contacts in the set of these 20 best structures. Using a
recently developed formalism,47 we then convert these
consensus contacts into a protein-specific pair potential.
Again, using the sequence-based profile to generate align-
ments, we use these to evaluate the pair interactions in the
second cascade of the threading algorithm. In what fol-
lows, we describe how each of these terms is derived.

Generation of Sequence Profiles

A sequence database combining Swissprot (http://www.ex-
pasy.ch/sprot/) and the genome sequence database (ftp://
kegg.genome.ad.jp/genomes/genes)48 is used for selecting
sequences. First, we use FASTA49,50 to select those se-
quences whose sequence identity lies between 35% and 90%
of the probe sequence. Then, multiple sequence alignments
are generated by using CLUSTALW.51 We term this the
“close” set of alignments. The sequence profile for the ith
position in the probe sequence for amino acid type g is

Pclose~g, i! 5

O
l51

Nclose

B~g, ail!

Nclose
. (1a)

Here, Nclose is the number of sequences that are aligned in
the “close” alignment, B(g, h) is the BLOSUM 6252 muta-
tion matrix for residues type g and h, and ail is the amino
acid at position i in the lth sequence.

To this set, we add additional sequences whose E-value
in FASTA is less than 10, and we generate a profile53 for
these distantly related sequences; these are termed the
“distant” set of alignments.

Pdist~g, i! 5

O
l51

Ndist

B~g, ail!

Ndist
. (1b)

Here, Ndist represents the “distant” sequences that are
aligned. The goal is to have two sequence profiles: one that
is more sensitive to more closely related sequences and
another that can sometimes detect more distantly related
sequences. Note that gaps are assigned a value of B 5 0,
but are counted in the averaging process. If a region has a
large number of gaps, then its contribution to the align-
ment is diminished relative to a gap-free region, where
B . 0, i.e., favorable mutations have occurred.

First-Pass Sequence-Profile Score Matrix

The score matrix for the first pass through the structural
database associated with aligning residue i with the Jth
residue in the Kth structure is

JK
w,1~i, J! 5 Pw~aJK, i! (2a)

where aJK is the residue at position J in the Kth structure.
Here, we use the shorthand notation

w 5 H close
dist J (2b)

which refers to the close or distant set of multiple sequence
alignments.

Secondary Structure Propensities and Pair
Interactions

In the next stage of the alignment process, we consider
secondary structure propensities and pair interaction
terms. For the secondary structure propensities, we con-
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sider the homology averaged secondary structure profile
energy defined by

Sw~Q1, Q2, i! 5

2 O
l51

Nw

ε~Q1, Q2, ail, ai11,l!

Nw
(3)

where ε(Q1, Q2, ail, ai11,l) is the energy of a consecutive
pair of amino acids ail, ai11,l in consecutive secondary
structure environments Q1 and Q2, respectively, which can
be helix, beta, or turn. This term is newly derived, but it is
related to a six-state conformational descriptor that was
developed previously.54 Here we consider three, rather
than six, conformational states (which is a finer-grained

Fig. 1. Overview of PROSPECTOR1 and PROSPECTOR2 threading routes. The protocol for PROSPECTOR1 is the following. First, close and
distant sequence profiles are generated. Then, each of these sequence profiles is used to scan a structural database. The probe-template alignments
provided by the sequence profile scoring function are used to identify the partners in the probe sequence for use in the next threading iteration that uses
sequence plus secondary structure plus pair interaction profiles. The five top-scoring structures for each scoring scheme are collected and composite
results are reported. For PROSPECTOR2, the consensus contacts (occurring in structures with Z-scores greater than 1.2 and are found at least three
times) in this set of the 20 top-scoring structures provided by PROSPECTOR1 are then used to construct a protein-specific pair potential that is used in a
subsequent iteration of threading, again based on close and distant sequence profiles.
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description) and use multiple-sequence averaging rather
than just considering a single sequence.

The next step is to use the alignment provided by the
sequence-only scoring profile to generate the partners in
the evaluation of the pair potentials. First, we consider
the homology averaged pair interaction matrix defined
by

Ew~i, j! 5

2 O
l51

Nw

ε~ail, ajl!

Nw
(4)

where ε(g, h) is the arithmetic average of quasi-chemical
pair potentials which describes interactions between side
chains of amino acid types g, h that are in contact (that is,
have one pair of heavy atoms within 4.5 Å of each other).
This protein-specific pair potential was derived previously
by using weak local sequence fragment similarity47 and w
is defined as in Eq. (2b). The minus sign arises because we
want to maximize the score, that is, gap penalties are
negative.

The results described below are insensitive to the choice
of the contact definition cutoff, provided that atoms in the
first solvation shell are considered. The effect of the use of
alternative, distance-dependent potentials has not yet
been explored, but will be examined in future work.

Second-Pass Scoring Matrix Using the Partially
Thawed Approximation

Let M1K
f (J) be the alignment between the Jth residue in

the Kth structure and the probe sequence generated by the
wth sequence profile after the first iteration. There is one of
two possible values for M1K

f (J): either there is a gap in the
probe sequence that aligns to the Jth position in the Kth
structure or the probe sequence position aligns the Jth
position.

We can now construct the score matrix, JK
w,2(i, J) associ-

ated with aligning the ith probe position with the Jth
position in the Kth structure:

JK
w,2~i, J! 5 l1JK

w,1~i, J! 1 l2Sw~sj, sj11, i!

1 l3 O
m51

ncK~J!

Ew$i, M1K
f @CJK~m!#%. (5)

Here, JK
w,1(i, J) is given by Eq. (2a) or (2b) depending on

which sequence profile is used, the {lw} are the weight
factors of the various scoring functions (taken on optimiza-
tion to be 1, 5, and 5 respectively, as this set of parameters
gave the best results on the 68 pairs of proteins). Here, sJ

and sJ 1 1 are the conformations of residues J and J 1 1 in
the Kth structure. ncK(J) is the number of contacts the Jth
residue makes in structure K, CJK(m) is the identity of the
mth contact partner that residue J makes in structure K,
M1K

f [CJK(m)] is the alignment to the corresponding posi-
tion in the probe sequence associated with residue CJK(m)
that was generated using the first pass, and the sequence-
profile score matrix is given by either Eq. (2a) or (2b)
depending on the sequence profile that is used. As before,

dynamic programming is used to generate the alignments
in the second pass.

We allow for the possibility of different gap opening and
gap propagation penalties. Table I shows a summary of the
set of values of the gap penalties optimized to select the
maximum number of correct structures as compared with
the Fischer database for each of the four scoring functions.
In this optimization procedure, gap insertion penalties
were allowed to assume all even integer values from 22 to
212, and gap propagation penalties were scanned from
20.1 to 21.2. The set of gaps used in PROSPECTOR2 may
also be found in Table I. Interestingly, when secondary
structure propensities and pair interactions are consid-
ered, the gap-opening penalties are larger for the close
profile cases than the distant profile cases. This reflects
the fact that when a distant sequence profile is used, the
gap penalties may have to be smaller to allow the favorable
alignment regions to be found.

For each of the four scoring functions, we report the top
five scoring structures, for a total of 20 structures (four
scoring functions times the best five structures for each
scoring function). Alignments for each of these probe-
template assignments are also generated.

Generation of Protein-Specific Pair Potentials
from Threading

In the twilight zone of score significance where a probe
cannot be assigned to a specific template, there may be
fragments of template structures that display some rela-
tionship to the native structure of the probe sequence. If
this were true, then at least some of the selected structures
should have consistent substructure features such as
side-chain contacts. By trial and error on a set of protein
structures previously used in an earlier ab initio folding
study,55 the following criteria were found to work best. As
described in detail elsewhere, on average about 35–40% of
the predicted contacts are correct if they belong to pairs of
residues that are at least four residues apart and occur in
at least 25% of the top scoring structures having a Z-score
greater than 1.3.

The question then remains as to how to incorporate such
information into the subsequent iteration of the threading

TABLE I. Compilation of Gap Penalties for the Four
Scoring Functions Used in PROSPECTOR1 and

PROSPECTOR2†

Method
Gap opening

penalty
Gap propagation

penalty

“Close” sequence-profile 26.0 20.8
“Close” sequence-profile plus

secondary structure plus
pair profile

212.0 (210.0) 21.0 (20.8)

“Distant” sequence-profile 24.0 21.2
“Distant” sequence-profile

plus secondary structure
plus pair profile

28.0 (26.0) 21.2 (21.0)

†The numbers in parentheses refer to those cases in PROSPECTOR2
that differ from PROSPECTOR1.
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algorithm. Because the predicted contacts are inexact,
rigorously demanding that they all be satisfied would lead
to spurious results. Rather, such contacts could be con-
verted into a pseudo potential that reflects a bias toward
such contacts, and we could then repeat the second pass of
the threading procedure using the newly derived, now
protein-specific, pair potential. Because PROSPECTOR2
uses consensus information, which includes a significant
number of correct or near-correct contacts, it should be
more specific than when such information is absent, as in
PROSPECTOR1. As in PROSPECTOR1, the alignment
that assigns the partners is provided by either the close or
distant sequence profile. Then, we use dynamic program-
ming to evaluate the probe-template fitness with an en-
ergy function that now includes the modified pair poten-
tials. We call the threading method that uses these terms
PROSPECTOR2. A schematic overview of PROSPEC-
TOR2 is given in the lower half of Figure 1.

The protein-specific pair potential is constructed as
follows. If there are more than three contacts predicted
between residues i and j, whose total number is qij, then
we calculate the pair potential for these positions as

V~i, j! 5 2lnSqij

qij
0D (6a)

where the expected number of contacts, qij
0 is given by

qij
0 5

O
i51

n O
j51

n

qij

n2 (6b)

and n is the number of residues in the probe sequence. For
those pairs of positions in which no consensus contacts are
found, we simply use the profile-based pair potential of Eq.
(4). We then use the arithmetic average of this potential
and our profile-based pair potential given by Eq. (4) in the
second threading pass for the close and distant cases of
protein-specific pair potentials.

Analysis of the Structural Predictions

We have argued that the use of pair potentials improves
the fold specificity. There are a few ways to test this
hypothesis. One is to examine the mean Z-score of the
correctly identified template structure as a function of the
various potentials used, where the Z-score for the Kth
structure having energy EK is given by

ZK 5
~EK 2 ^E&!

s
(7)

with ^E& and s being the mean and standard deviation
values of the energy of the probe in all templates of the
structural database. This is one measure of the utility of a
particular scoring function. Because we do not randomize
the sequence in the evaluation of Eq. (7), our reported
Z-scores will be lower than when this is done. However,
sequence randomization is a computationally expensive
process, and it would be a significant advantage to be able

to avoid it, especially when threading is done on a genomic
scale.

Another area to be investigated is the accuracy of the
predicted structure. One means of assessing accuracy is to
examine the predicted side chain contact maps. Among the
quantities that we report are fc, the fraction, and Nc, the
number of correctly predicted contacts. Again, we need
some measure of the significance of these quantities. One
such measure arises by generating random alignments of
the probe sequence in the correct template structure.
However, this does not necessarily indicate how significant
the contact map prediction is. Consider the case in which
one has a library of homologous structures and predicts
95% of the contact map correctly. By randomizing the
contact map, one would conclude that this is a highly
significant prediction. However, one could just as easily
have selected the structure at random. Here, the specific-
ity of the prediction is in fact close to zero. In general, if one
focuses on a single structure, relative to the library of all
structures, one has no idea of the significance of the value
of Nc. To address this issue, we suggest the following
metric: for the entire structural template library, let us
calculate the average number, N0, of correctly predicted
contacts for the best probe-template alignments of the
probe sequence in all template structures as well as the
standard deviation of this quantity, s0. Then, we report
the Z-score for the number of correctly predicted contacts
for the correct probe-template pair as

Zcon 5
~Nc 2 N0!

s0 . (8)

This quantity more appropriately measures the signifi-
cance of a given number of predicted contacts.

RESULTS
Application to the Original Fischer Benchmark

We focused on the Fischer database.56 Composed of 301
template structures and 68 probe sequences, the Fischer
database represents a standard benchmark in the thread-
ing field. We tried a variety of approaches on this database
before deciding on the aforementioned combination of
parameters described in Materials and Methods. We sum-
marize the results of these earlier studies below.

For a given scoring function, the Needleman-Wunsch
global alignment algorithm33 recognized more correct
probe-template pairs on average than did the Smith-
Waterman local alignment algorithm.57 We also tried
using the secondary structure profiles alone as the initial
step in generating the probe-template alignment for pair
evaluation. Secondary structure profiles alone only recog-
nize 18 cases in the first position, whereas secondary
structure profiles plus pair profiles recognize 29 cases.
This clear improvement shows the utility of pair potentials
in this approach. Nevertheless, 29 correctly recognized
pairs represent rather poor performance. The major im-
provement in fold recognition is achieved, as others have
observed, when sequence profiles are used.18 If we use the
sequence-profile-based alignment, but ignore the sequence-
profile term in the calculation of the energy [i.e., using Eqs.
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(3) and (4)], then 34 probe-sequence-template structure pairs
are matched as the top score. This is to be contrasted to 52
cases (see Table II) that are correctly assigned when the
entire sequence plus secondary structure plus pair profiles
are used. In all cases, when combined in a hierarchical
manner, we have found that inclusion of pair interactions
improves the yield of correct probe-template matches.

In the top part of Table II, we summarize our results by
using PROSPECTOR1 and its hierarchy of four scoring
functions. Note that the “distant” sequence profile recog-
nizes a somewhat greater number of correct pairs (46 pairs
or 67%) than does the “close” profile (44 pairs or 65%). This
is very interesting in that it shows that these distant
profiles contain additional information that can be profit-
ably used to increase the recognition abilities of these
threading algorithms. However, the best single scoring
function is the combined distant sequence profile plus
secondary structure plus pair interaction scoring function

that recognizes 52 (72%) cases in the top position. In itself,
this single scoring function is a competitive threading
algorithm (see below). This is an improvement of six
correctly matched structures relative to the best (distant)
sequence profile case. Further, it recognizes the most
proteins in the top four, five, eight, and 10 positions. The
performance of the close sequence-profile plus secondary
structure plus pair interaction scoring function is also
quite good. It recognizes more top-scoring proteins than
the close sequence-profile case alone (45 versus 44), and
also recognizes considerably more proteins in the top four,
five, eight, and 10 positions, for example, 55 versus 46
proteins in the top five positions. Clearly, the best perfor-
mance is when all four scoring functions are combined.
Then 59, 63, and 65 proteins are recognized in the top, top
five, and top 10 positions, respectively.

Another means of assessing the utility of a given scoring
function is to measure the mean Z-score of the correctly

TABLE II. Summary of Threading Results Using Different Scoring Functions for the Fischer Database†

Method
Number of Fischer pairs

in the first position

Number of Fischer
pairs in the top 5

(4) positions

Number of Fischer
pairs in the top 10

(8) positions

Mean Z-score of
correctly

predicted pairs

PROSPECTOR1
“Close” sequence-profile 44 46 (46) 49 (47) 2.65
“Close” sequence-profile plus secondary

structure plus pair profile
45 55 (53) 56 (55) 3.32

“Distant” sequence-profile 46 53 (51) 53 (53) 2.5
“Distant” sequence-profile plus

secondary structure plus pair profile
52 56 (56) 59 (57) 3.06

Hierarchy of four scoring methods 59 63 (62) 65 (63)
Hierarchy of three scoring functions (as

above but without the “distant”
sequence-profiles)

58 62 64

PROSPECTOR2
“Close” PROSPECTOR2 sequence-

profile plus protein-specific pair and
secondary structure potentials
profile

48 51 (51) 58 (58) 3.95

“Distant” sequence-profile plus protein-
specific pair and secondary structure
potentials

51 59 (59) 59 (59) 3.84

Hierarchy of four scoring methods 61 64 (64) 65 (65)
Hierarchy of three scoring functions (as

above but without the “distant”
sequence-profiles)

60 64 65

Other methods
Simple Blast1 27 — —

PSI-BLAST restricted to the Fischer
database46,59

24 37 (36) 40 (39)

PSI-BLAST using extensive sequence
database and PSSM constructured
using IMPALA60

41 46 (46) 47 (46)

Original GKS threading program29 22 30 34
Hybrid threading58 52 57 60
Best UCLA benchmark results as of

2/4/00 which is prediction of
secondary structure plus multi-
gonnet16

52 (56) (58)

†Results are reported in both the top 5 (4) and top 10 (8) positions,58 with the number in parenthesis given by the UCLA benchmark website
(http://www.doe-mbi.ucla.edu/people/fischer/BENCH/table1.html).
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identified proteins. The close sequence profile plus second-
ary structure plus pair interaction scoring function has a
mean Z-score of 3.32 that is the best of all scoring functions
and is significantly better than the close sequence profile,
which has a mean Z-score of 2.65. Note that the distant
profile recognizes 46 proteins in the top position and has a
marginally poorer mean Z-score of 2.50 as compared with
the close profile value of 2.65. For both close and distant
cases, the use of pair interactions plus secondary structure
propensities increases the sequence-structure specificity
relative to the use of a sequence profile alone, with the
mean Z-score of the distant case of 3.06. In other words,
the use of structural information confers an advantage
over the cases in which pure evolutionary information is
used, both in terms of the number of proteins placed in the
top position as well as in the sequence-structure specificity
as assessed by the Z-score.

One of the best alternative methods reported on the UCLA
website as of August 1, 2000 (http://www.doembi.ucla.edu/
people/fischer/BENCH/table1.html) is that of Gonnet (which
is a pairwise sequence-alignment method that also uses
predicted secondary structure); it recognizes 52 proteins in
the top position. This is the same number that the combined
distant sequence profile plus secondary structure plus pair
interaction scoring function recognizes. We also recognize
the same number of proteins in the top four positions (56) and
one less protein in the top eight (57 versus 58).

If any method, in particular a hierarchical method such
as PROSPECTOR1, is considered, then ours is clearly the
best, as 59 proteins are recognized in the top position, with
a total of 65 pairs recognized in the top 10 positions. It is
clearly superior to all of our early efforts in threading as
well as to the hybrid method,58 BLAST,1 and PSI-
BLAST.46,59 In particular, for PSI-BLAST, we report two
sets of results. The first is when only sequences from the
Fischer database are used to generate the profiles, and the
second is when an extended version of the same sequence
database that we use to generate the sequence profiles is
used. For the FISCHER-only database, only 24 probe-
template pairs are correctly identified in the first position.
Next, we use a larger sequence database (consisting of all
the sequences in Swiss Prot, the genome sequence data-
base from KEGG, and the trEMBL database (http://
expasy.proteome.org.au/sprot/) to generate position-spe-
cific score matrices, PSSM, using the IMPALA package
with default settings.60 Now, 41 cases are assigned to the
top position. Note that this performance is worse than
when either the close or distant sequence profiles are used
alone. With respect to the top five positions, the close
(distant) profile places 46 (53) and 49 (53) in the top five
and 10 positions. In contrast, PSI-BLAST places 46 and 47
proteins in the top five and 10 positions, respectively.

It might be argued that, because we use four scoring
functions and the hybrid threading method58 only uses
three, this is not a fair comparison. If we eliminate those
results obtained from the “distant” sequence profiles, then
we obtain 58, 62, and 64 cases in the top one, five, and 10
positions, respectively. Thus, with respect to this test,
PROSPECTOR1 is certainly a very competitive algorithm.

In Table IIIA,5 we further analyze the distant sequence-
profile scoring function. Here we show that the Z-score for
the number of correctly predicted side-chain contacts, Zcon

(see column 6) is, in general, significantly better that one
would expect from random; indeed, it has a mean value of
7.57. At first glance, it might be argued that this is simply
an artifact in that the sequence profile generates a good
probe-template match based on the score significance, and
because the two structures are similar, this result is
trivial. A number of the correctly ranked structures have a
rather poor energy Z-score, yet their contact prediction is
highly significant, e.g., (1bbt1 in 2plv1 has a Z-score of 1.64
and Zcon is 13.6). Furthermore, some of the probe-template
pairs that do not lie near the top scores can also have a
significant Zcon. For example, the score of 1ten_ in 3hhrB is
at position 127, yet Zcon is 4.6. Note that 4 of 11 of the
poorly ranked structures (1 , rank , 16) have a Zcon

greater than three, which is much better than one might
guess based on the rank of the correct template structure.
Of course, there are some cases that are much worse than
random as well. This substantiates our earlier observation
that a sequence profile can often generate a reasonable set
of correct contacts (on average 25% correct) even when the
score of the alignment is not significant. Of course, because
there is a substantial fraction of incorrect contacts as well,
the pair-potential contribution cannot be made too large
because these incorrect contributions could dominate the
score.

In Table IIIB, we present the results for the distant
sequence profile plus secondary structure plus pair profile
scoring function. As would be expected, compared with the
distant profile case, the mean Z-score (now over all, not
just correctly predicted pairs) has increased from 1.95 to
2.59. Now, 29% of the contacts are, on average, correct, and
the mean Z-score of correctly predicted contacts has in-
creased from 7.57 to 8.39. The ranking of 16 probe-
template pairs improve and six cases get worse. Of the six
cases that have a worse ranking, all have Z-scores less
than 1.6, a range in which 16 of 32 cases are correctly
assigned. Furthermore, the misassignment of 1omf_ (a
membrane protein), by a pair potential derived for water-
soluble proteins is understandable. In another two cases
(3hlaB and 1sacA), the rank moves from first to second.
For 3hlaB, the best scoring fold, 3cd4_, has its best
structure alignment with a root-mean-square deviation of
2.52 Å on the Cas over a slightly smaller part of the
structure as compared with the best structural alignment
of 2rhe_ of 2.56 Å over a slightly longer piece of structure.
For 1sacA, the correct fold is 2ayh_ and the misassign-
ment, 8fabA, are all b barrels, with the latter having a
significant structural superposition over roughly half of
the 1sacA native structure. For 3rubL the rank of 6xia_
moves from third to 21st, with 1ipd_ rated as the best
match. The best structural superposition of 1ipd_ and
3rubL is 2.78 Å whereas that of 6xia and 3rubL is 2.52 Å,
over about two-thirds of the structure. Finally, for 1tahA,
the first- to second-pass ranks move from 88th to 20th.

Turning now to PROSPECTOR2, and using the formal-
ism of Eqs. (6a) and (6b), we derive a set of protein-specific
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potentials, generated by consensus contacts in the top
threaded structures as provided by PROSPECTOR1. We
use the arithmetic average of this potential given by Eqs.
(6a) and (6b) and the original profile-based pair potential
given by Eq. (4) in the next threading iteration. This case is
termed the “close” and “distant” protein-specific pair poten-
tials. The results of this calculation as well as the entire
composite result of all four scoring functions (“close”
sequence profiles, “close” sequence profiles plus secondary
structure plus protein-specific pair potentials, “distant”
sequence profiles, “distant” sequence profiles plus second-
ary structure plus protein-specific pair potentials) are
reported in Table II. It is shown that the “distant” case
alone recognizes a total of 51 proteins. This is somewhat
worse than in PROSPECTOR1, where 52 proteins are
recognized. However, the mean Z-score of the correctly
predicted proteins increases from 3.06 to 3.84. However,
the number of proteins in the top five positions increases
from 56 to 59. The close sequence profiles plus secondary

structure plus protein-specific pair potentials recognizes
48 proteins in the top position as compared with 46 in
PROSPECTOR1, with an increase in the mean Z-score of
correct cases (3.32 to 3.95) and the recognition of one new
protein in the top position. For the composite prediction of
PROSPECTOR2, 61, 64, and 65 proteins are recognized in
the top, top five, and top 10 positions. Interestingly, as
shown in Table IV, the average fraction of side-chain
contacts that are selected in the probe-template structure
increases slightly from 0.29 (see Table IIIB) for the pair
profiles of PROSPECTOR1 to 0.30 with a slight increase in
the average Zcon from 8.39 to 8.66. Finally, the mean
threading Z-score for all structures increases from 2.59 to
3.23.

Application to the Second Fischer Benchmark

Fischer has prepared another benchmark composed of
29 probe-template pairs scanned against the original
Fischer structural database plus an additional 19 tem-

TABLE IIIA. Compilation of Results on the Fischer Benchmark for the Distant Sequence-Profile Scoring Function

Probe Template Rank Z-score Nc
b fc

c Zcon
d N0e Probe Template Rank Z-score Nc

b fc
c Zcon

d N0e

2mnr_ 4enl_ 1 5.95 118 0.09 6.48 22.50
1tahA 1tca_ 88 0.52 80 0.14 4.34 23.53
1ltsD 1bovA 40 0.82 6 0.04 21.07 12.98
1mdc_ 1ifc_ 1 2.78 0 — 21.91 12.92
3chy_ 4fxn_ 60 0.75 46 0.16 2.79 18.80
2sga_ 4ptp_ 1 1.34 72 0.19 13.06 6.80
1fc1A 2fb4H 1 1.52 134 0.24 11.39 17.76
1onc_ 7rsa_ 1 4.30 176 0.61 30.37 11.09
1fxiA 1ubq_ 19 0.90 20 0.10 2.22 9.44
3hlaB 2rhe_ 1 1.17 54 0.25 8.91 8.52
3rubL 6xia_ 3 1.53 46 0.07 1.20 25.56
1chrA 2mnr_ 1 5.33 556 0.44 33.87 24.21
2pia_ 1fnr_ 175 0.31 42 0.10 1.33 23.78
1aep_ 256bA 1 1.07 34 0.14 1.60 18.23
2ak3A 1gky_ 1 2.06 114 0.27 6.13 26.59
3cd4_ 2rhe_ 1 2.24 66 0.29 8.37 11.55
1cauB 1cauA 1 1.94 198 0.47 23.00 16.06
1c2rA 1ycc_ 1 4.05 164 0.54 21.19 15.07
1aaj_ 1paz_ 1 1.70 102 0.40 14.93 11.55
1gky_ 3adk_ 1 1.37 182 0.34 12.67 22.61
1mioC 3minB 1 7.18 542 0.31 23.18 32.50
1eaf_ 4cla_ 1 1.98 174 0.32 13.20 21.89
1pfc_ 3hlaB 1 1.74 62 0.22 12.30 6.27
5fdl_ 2fxb_ 5 1.20 26 0.41 2.72 10.93
2afnA 1aozA 1 2.66 54 0.06 3.02 18.62
1hrhA 1rnh_ 1 1.62 82 0.28 8.32 15.30
1npx_ 3grs_ 1 7.72 492 0.36 26.44 26.53
1bbt1 2plv1 1 1.64 106 0.34 13.55 13.63
1mup_ 1rbp_ 1 1.56 108 0.29 10.74 17.31
1aba_ 1ego_ 1 2.08 78 0.32 11.94 10.43
1crl_ 1ede_ 36 1.10 46 0.07 1.19 25.39
1cpcL 1colA 3 1.06 34 0.10 1.51 18.81
2azaA 1paz_ 24 0.82 46 0.21 4.71 13.64
1bgeB 1gmfA 11 0.88 62 0.27 4.28 18.63
1ten_ 3hhrB 127 0.52 28 0.12 4.56 7.52
aZ-score for the score significance is given by Eq. (7).
bNumber of correctly predicted contacts for the correct probe-template pair.
cFraction of correctly predicted contacts for the correct probe-template pair.
dZ-score of correctly predicted contacts given by Eq. (8) for the correct probe-template pair.
eNumber of correctly predicted contacts averaged over the entire structural template library.

1hip_ 2hipA 1 2.03 104 0.57 21.26 7.94
1arb_ 4ptp_ 1 2.85 22 0.04 0.96 13.90
1atnA 1atr_ 1 1.69 178 0.21 9.35 26.14
2sarA 9rnt_ 4 1.01 26 0.18 2.98 10.01
1sacA 2ayh_ 1 1.32 32 0.12 1.37 19.05
1hom_ 1lfb_ 1 1.37 70 0.55 8.27 11.86
2snv_ 4ptp_ 11 1.06 50 0.19 5.02 14.06
1cewI 1molA 15 0.95 86 0.34 13.18 12.23
1cid_ 2rhe_ 15 0.79 30 0.12 1.70 16.52
2hhmA 1fbpA 1 1.27 128 0.20 9.39 20.15
1tie_ 4fgf_ 1 1.14 36 0.14 3.76 1.82
1rcb_ 1gmfA 1 1.01 38 0.15 2.08 17.37
1tlk_ 2rhe_ 1 1.14 82 0.39 11.74 10.76
1stfI 1molA 3 0.95 22 0.10 1.74 11.64
2omf_ 2por_ 1 2.11 38 0.08 1.80 18.78
4sbvA 2tbvA 1 2.49 110 0.21 11.38 15.36
1dxtB 1hbg_ 1 1.80 246 0.64 23.88 19.62
2cmd_ 6ldh_ 1 8.68 430 0.40 23.70 27.20
2fbjL 8fabB 2 1.02 24 0.09 0.49 19.47
2sas_ 2scpA 1 2.04 176 0.33 10.43 24.37
2pna_ 1shaA 1 1.18 6 0.06 20.70 9.66
1osa_ 4cpv_ 1 1.86 142 0.46 8.53 26.71
2hpdA 2cpp_ 1 3.64 284 0.25 14.48 27.08
1lgaA 2cyp_ 1 3.69 442 0.46 28.53 23.80
1bbhA 2ccyA 1 2.36 118 0.38 12.22 15.12
1isuA 2hipA 1 1.56 42 0.30 8.98 6.33
2mtaC 1ycc_ 1 1.13 26 0.08 1.13 16.74
1dsbA 2trxA 5 0.93 66 0.24 3.62 22.83
2sim_ 1nsbA 256 20.49 28 0.06 0.45 22.41
2gbp_ 2liv_ 16 0.82 58 0.10 1.68 28.46
1gplA 2trxA 84 0.55 28 0.17 0.50 22.54
8ilb_ 4fgf_ 1 1.17 60 0.19 6.10 15.18
1gal_ 3cox_ 1 2.63 322 0.28 17.87 25.42

Average 1.95 0.25 7.57
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plate structures (http://www.doe-mbi.ucla.edu/people/
fischer/BENCH/tablepairs2.html). We have only been able
to find 27 of the probe sequences, and report our results
accordingly. We do not know whether the lack of the two
additional sequences would change our results, and thus
we report on those probes in which sequences are avail-
able. PROSPECTOR1 recognizes 17 pairs in the top posi-
tion, as compared with the best-reported results of 17
correctly identified pairs as well as 21 and 22 in the top
four and eight positions, respectively. However, in our
case, one probe, “stel,” which is supposed to be matched to
2azaA, selects 2pcy in the top position. Then, we have 18,
19 (19), and 20 (20) correct matches in the top position and
top five (four) and 10 (eight) positions, respectively. Thus,
we have somewhat better results for the first position than
what has been reported previously. If we consider PROS-
PECTOR2, then a total of 17, 20, and 20 proteins are

recognized in the top, top five, and top 10 positions,
respectively.

Web-Based Access

We have set up a web server, available to the academic
user community, for threading calculations that may be
found at http://bioinformatics.danforthcenter.org/services/
threading.html. A single sequence is all that is required,
and the results will be e-mailed back to the user along with
the probe-template alignments of the top 20 scoring struc-
tures and the multiple sequence alignment files.

DISCUSSION

One of the problems with earlier, pseudo one-dimen-
sional treatments of threading is the problem of correctly
selecting the partners for evaluation of the pair interac-
tions. Originally, to address the problem, we introduced

TABLE IIIB. Compilation of Results on the Fischer Benchmark for the Distant Sequence Profile Plus Secondary
Structure Plus Pair Interactions Scoring Function in PROSPECTOR1

Probe Template Rank Z-score Nc
b fc

c Zcon
d N0e Probe Template Rank Z-score Nc

b fc
c Zcon

d N0e

2mnr_ 4enl_ 1 3.60 150 0.12 5.42 33.17
1tahA 1tca_ 20 0.85 142 0.15 4.67 37.55
1ltsD 1bovA 9 1.01 14 0.06 20.50 17.67
1mdc_ 1ifc_ 1 3.32 0 — 22.21 18.57
3chy_ 4fxn_ 1 1.33 76 0.20 3.87 26.65
2sga_ 4ptp_ 1 1.47 86 0.18 11.33 11.00
1fc1A 2fb4H 1 2.50 242 0.40 15.27 27.69
1onc_ 7rsa_ 1 4.98 176 0.61 22.15 16.41
1fxiA 1ubq_ 2 1.39 30 0.15 2.61 13.80
3hlaB 2rhe_ 2 1.55 66 0.29 5.95 14.59
3rubL 6xia_ 21 1.34 78 0.09 1.69 36.12
1chrA 2mnr_ 1 8.28 638 0.46 20.19 45.57
2pia_ 1fnr_ 50 0.63 148 0.18 4.99 40.00
1aep_ 256bA 1 1.48 18 0.06 20.36 22.19
2ak3A 1gky_ 1 2.66 132 0.24 4.62 41.02
3cd4_ 2rhe_ 1 3.02 96 0.38 9.97 15.00
1cauB 1cauA 1 3.28 268 0.57 24.58 20.96
1c2rA 1ycc_ 1 4.75 170 0.56 18.93 19.06
1aaj_ 1paz_ 1 2.80 146 0.50 15.80 16.69
1gky_ 3adk_ 1 2.33 172 0.32 7.68 37.14
1mioC 3minB 1 8.01 642 0.37 17.40 46.84
1eaf_ 4cla_ 1 3.56 244 0.38 13.59 33.14
1pfc_ 3hlaB 1 2.72 66 0.22 9.11 9.55
5fd1_ 2fxb_ 1 1.40 34 0.22 2.28 17.34
2afnA 1aozA 1 2.50 72 0.07 2.46 30.94
1hrhA 1rnh_ 1 2.38 96 0.34 7.76 22.13
1npx_ 3grs_ 1 7.91 536 0.37 16.48 45.61
1bbt1 2plv1 43 0.77 132 0.41 13.07 17.10
1mup_ 1rbp_ 1 2.31 208 0.42 14.79 30.07
1aba_ 1ego_ 1 2.47 78 0.32 8.41 14.82
1crl_ 1ede_ 1 1.94 138 0.13 3.80 39.09
1cpcL 1colA 1 1.34 36 0.08 0.88 24.96
2azaA 1paz_ 2 1.47 72 0.29 5.67 19.61
1bgeB 1gmfA 3 1.39 76 0.21 3.90 25.35
1ten_ 3hhrB 37 0.96 40 0.15 5.35 10.11
aZ-score for the score significance is given by Eq. (7).
bNumber of correctly predicted contacts for the correct probe-template pair.
cFraction of correctly predicted contacts for the correct probe-template pair.
dZ-score of correctly predicted contacts given by Eq. (8) for the correct probe-template pair.
eNumber of correctly predicted contacts averaged over the entire structural template library.

1hip_ 2hipA 1 2.74 96 0.54 15.43 11.60
1arb_ 4ptp_ 1 2.23 36 0.05 1.66 18.89
1atnA 1atr_ 1 2.27 156 0.18 5.02 38.40
2sarA 9rnt_ 1 1.38 70 0.29 7.78 15.10
1sacA 2ayh_ 6 1.28 58 0.13 2.28 29.08
1hom_ 1lfb_ 1 2.05 88 0.64 7.77 18.03
2snv_ 4ptp_ 14 1.15 62 0.23 4.67 20.36
1cewI 1molA 1 1.48 112 0.38 11.67 18.76
1cid_ 2rhe_ 9 1.01 24 0.10 0.16 22.29
2hhmA 1fbpA 1 2.83 236 0.24 11.05 36.72
1tie_ 4fgf_ 1 1.51 66 0.18 4.87 19.52
1rcb_ 1gmfA 1 1.35 90 0.30 4.76 28.30
1tlk_ 2rhe_ 1 1.46 140 0.56 16.58 15.80
1stfI 1molA 1 1.36 48 0.22 4.29 15.92
2omf_ 2por_ 12 1.17 132 0.20 6.02 29.10
4sbvA 2tbvA 1 2.52 116 0.21 8.57 23.28
1dxtB 1hbg_ 1 3.40 260 0.68 18.63 27.79
2cmd_ 6ldh_ 1 9.54 462 0.42 15.53 43.85
2fbjL 8fabB 1 2.25 140 0.20 9.84 24.64
2sas_ 2scpA 1 2.52 176 0.33 7.27 38.76
2pna_ 1shaA 1 1.42 8 0.07 20.77 12.18
1osa_ 4cpv_ 1 3.17 152 0.45 6.31 39.87
2hpdA 2cpp_ 1 8.86 652 0.42 20.45 46.73
1lgaA 2cyp_ 1 6.48 502 0.50 21.52 38.11
1bbhA 2ccyA 1 2.98 176 0.53 14.89 21.18
1isuA 2hipA 1 1.81 40 0.30 7.68 7.50
2mtaC 1ycc_ 1 1.25 44 0.14 1.77 24.58
1dsbA 2trxA 1 1.69 88 0.31 3.31 34.67
2sim_ 1nsbA 112 0.39 78 0.08 1.91 37.13
2gbp_ 2liv_ 1 1.57 164 0.21 4.21 46.57
1gplA 2trxA 25 0.97 54 0.18 1.56 32.03
8ilb_ 4fgf_ 1 1.80 66 0.19 4.47 22.40
1gal_ 3cox_ 1 4.68 472 0.29 17.49 38.49

Average 2.59 0.29 8.39
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the frozen approximation in which the partners from the
template structure are used in the evaluation of the pair
potentials.29 If the environments were similar, the approxi-
mation worked well. Otherwise, it performed poorly. How-
ever, for practical reasons, it would be desirable to retain
the advantages of a local scoring function that enables
dynamic programming to be used as the search scheme.
Here, we have suggested an iterative approach in which a
sequence profile is used to generate the initial alignment of
the probe sequence in the template structure; in subse-
quent iterations, this alignment is used to evaluate the
partners. We term this the “partly thawed” approximation.
We have demonstrated that this approximation works
quite well, not only in the selection of the template, but
also in the construction of a protein-specific pair potential
whose recognition capabilities are enhanced as assessed
by the Z-score of the correctly predicted structures. When
the entire hierarchical approach of four scoring functions

is used in PROSPECTOR2, this method correctly recog-
nizes 61 proteins in the top position. In addition, the use of
pair potentials enhances the number of correctly identified
side-chain contacts when the correct probe-template pair
is considered. In future work, we will explore this issue
further and report on the use of suboptimal scoring
structures in threading for the prediction of tertiary
contacts and secondary structure.

The question as to why PROSPECTOR does compara-
tively better than alternative approaches developed previ-
ously and described on the UCLA website (http://www.doe-
mbi.ucla.edu/people/fischer/BENCH/tablepairs2.html) is not
a simple one to answer. Certainly, the use of a hierarchical
approach can provide additional information over the case
when just a single scoring function is used. It might be
argued that the present approach is superior because it
handles pair interactions better than the methods described
on the UCLA website, which either do not consider pair

TABLE IV. Compilation of Results on the Fischer Benchmark for the Distant Sequence Plus Secondary Structure Plus
Protein-Specific Pair Profiles Scoring in PROSPECTOR1

Probe Template Rank Z-score Nc
b fc

c Zcon
d N0e Probe Template Rank Z-score Nc

b fc
c Zcon

d N0e

2mnr_ 4enl_ 1 5.27 150 0.12 5.28 33.79
1tahA 1tca_ 1 1.96 148 0.17 5.42 37.51
1ltsD 1bovA 81 0.71 44 0.22 3.15 19.04
1mdc_ 1ifc_ 1 2.80 0 0.00 22.25 19.87
3chy_ 4fxn_ 1 1.73 64 0.16 2.64 27.89
2sga_ 4ptp_ 1 1.82 104 0.25 17.72 7.36
1fc1A 2fb4H 1 3.78 226 0.38 13.82 28.49
1onc_ 7rsa_ 1 6.55 176 0.60 21.34 17.53
1fxiA 1ubq_ 3 1.61 52 0.25 6.09 14.25
3hlaB 2rhe_ 2 2.06 72 0.29 6.41 16.17
3rubL 6xia_ 48 1.15 82 0.10 1.83 36.19
1chrA 2mnr_ 1 9.62 646 0.46 19.66 46.23
2pia_ 1fnr_ 11 1.27 178 0.22 6.07 41.38
1aep_ 256bA 4 1.56 20 0.08 20.05 20.50
2ak3A 1gky_ 1 2.86 178 0.35 7.17 41.55
3cd4_ 2rhe_ 1 4.26 100 0.41 8.97 16.94
1cauB 1cauA 1 4.72 268 0.59 23.67 23.47
1c2rA 1ycc_ 1 6.86 170 0.56 16.85 19.50
1aaj_ 1paz_ 1 4.10 146 0.53 14.18 18.26
1gky_ 3adk_ 1 3.77 194 0.36 9.09 38.53
1mioC 3minB 1 6.96 608 0.34 16.13 47.75
1eaf_ 4cla_ 1 4.97 234 0.38 13.04 34.14
1pfc_ 3hlaB 1 3.90 70 0.23 9.56 9.97
5fdl_ 2fxb_ 2 1.53 34 0.21 2.32 17.93
2afnA 1aozA 1 4.47 78 0.07 2.51 32.04
1hrhA 1rnh_ 1 3.32 100 0.34 8.97 21.57
1npx_ 3grs_ 1 8.48 542 0.36 15.78 47.45
1bbt1 2plv1 29 1.07 120 0.38 10.88 17.89
1mup_ 1rbp_ 1 3.72 212 0.43 14.14 32.73
1aba_ 1ego_ 1 3.18 80 0.33 7.79 16.17
1crl_ 1ede_ 13 1.53 130 0.12 3.78 38.34
1cpcL 1colA 1 2.25 54 0.13 2.34 25.98
2azaA 1paz_ 1 2.39 84 0.33 6.39 20.88
1bgeB 1gmfA 3 2.00 64 0.21 2.96 26.03
1ten_ 3hhrB 2 1.53 40 0.16 5.17 9.97
aZ-score for the score significance is given by Eq. (7).
bNumber of correctly predicted contacts for the correct probe-template pair.
cFraction of correctly predicted contacts for the correct probe-template pair.
dZ-score of correctly predicted contacts given by Eq. (8) for the correct probe-template pair.
eNumber of correctly predicted contacts averaged over the entire structural template library.

1hip_ 2hipA 1 3.79 114 0.62 18.79 11.40
1arb_ 4ptp_ 1 3.24 38 0.06 2.05 18.18
1atnA 1atr_ 1 2.09 220 0.23 7.48 40.09
2sarA 9rnt_ 1 1.67 54 0.27 5.54 15.50
1sacA 2ayh_ 14 1.39 66 0.15 2.55 31.69
1hom_ 1lfb_ 1 2.56 88 0.64 8.40 17.85
2snv_ 4ptp_ 1 2.13 88 0.28 7.38 21.85
1cewI 1molA 1 1.95 90 0.31 8.50 19.68
1cid_ 2rhe_ 12 1.26 32 0.13 0.68 24.41
2hhmA 1fbpA 1 3.62 258 0.29 11.44 38.07
1tie_ 4fgf_ 1 2.13 72 0.20 5.10 21.93
1rcb_ 1gmfA 1 1.81 100 0.30 5.87 27.59
1tlk_ 2rhe_ 1 1.70 154 0.61 15.72 16.85
1stfI 1molA 1 1.85 42 0.18 3.43 17.03
2omf_ 2por_ 37 1.06 74 0.15 2.97 27.89
4sbvA 2tbvA 1 4.11 116 0.21 9.08 23.42
1dxtB 1hbg_ 1 4.91 260 0.68 20.60 29.20
2cmd_ 6ldh_ 1 9.12 464 0.42 15.79 44.05
2fbjL 8fabB 1 3.13 142 0.21 10.20 25.14
2sas_ 2scpA 1 4.00 188 0.33 7.92 39.11
2pna_ 1shaA 1 1.53 8 0.07 20.66 11.68
1osa_ 4cpv_ 1 4.54 152 0.44 6.68 39.96
2hpdA 2cpp_ 1 6.48 604 0.40 17.87 50.09
1lgaA 2cyp_ 1 6.82 500 0.50 21.94 38.54
1bbhA 2ccyA 1 4.16 178 0.53 16.94 19.69
1isuA 2hipA 1 2.30 40 0.32 7.56 7.63
2mtaC 1ycc_ 2 1.29 32 0.11 0.81 23.67
1dsbA 2trxA 1 2.06 76 0.28 2.53 36.07
2sim_ 1nsbA 3 1.50 122 0.12 3.89 37.88
2gbp_ 2liv_ 1 2.53 222 0.26 6.11 46.93
1gp1A 2trxA 23 1.28 52 0.17 1.39 32.72
8ilb_ 4fgf_ 1 2.88 62 0.18 3.95 24.79
1gal_ 3cox_ 1 4.89 568 0.37 21.42 39.20

Average 3.23 0.30 8.66
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terms or treat them using the original frozen approximation.
Also, the pair potentials we use have been highly optimized
to give the best available results in gapless threading.47 A
potential weakness of the current approach is that we do not
use state-of-the-art sequence profiles (e.g., as provided by
PSI-BLAST). But our goal was to use a straightforward
sequence-profile implementation that would provide a base-
line for future work. However, surprisingly, our naive profile
implementation works better than PSI-BLAST.

One of the more surprising results in this series of
calculations is that the particular secondary structure
implementation we use only imparts a marginal improve-
ment relative to its absence in standard benchmarks.
Alternative secondary structure prediction schemes (e.g.,
using standard secondary structure prediction schemes
such as PHD61 first, and then implementing these pre-
dicted secondary structures as a bias) need to be explored.
Similarly, the choice of how pair interactions are imple-
mented has not been fully explored, and alternatives such
as Ca-based, and side-chain orientation-dependent poten-
tials62 have to be examined to see where additional
improvements in sequence-structure specificity can be
made.

Given that active site descriptors can correctly select
threading structures well into the twilight zone of sequence-
structure specificity and make both structural and func-
tional assignments with a low false-positive rate,8,10–15

the demands on a threading algorithm that uses such
information are much less stringent than if structure
prediction alone is to be done. That is, what one really
requires is an algorithm that can get the correct fold near
the top with a score of at least moderate significance with a
reasonably good alignment, and then an active site filter
can assist in fold as well as biochemical function identifica-
tion. This is the origin of our hierarchical method of
multiple scoring functions that, in combination, recognizes
59 of the 68 Fischer probe pairs in the top position in
PROSPECTOR1 and 61 in the top position in PROSPEC-
TOR2. Nevertheless, it is clearly important to have an
excellent threading algorithm to ensure that the correct
structure is within this threshold in order to be certain
that all proteins in a genome having the particular fold
and function are identified.

Finally, we observe that very distant sequence profiles
possess significant information and can profitably assist in
fold recognition. Indeed, quite often it is this set of
sequence plus secondary structure pair interactions that
has the best Z-score for the correct probe-template pair on
threading. Others have noticed the utility of using distant
sequences as well, including Simons et al.,63 Koretke
(personal communication), and our group in an earlier
derivation of local fragment-based protein-specific pair
potentials.47 Clearly, better ways remain to be developed
to more fully extract the information latent in the set of
weakly related sequences.

In summary, a new threading algorithm, PROSPEC-
TOR, has been developed, which is at the state-of-the-art
of contemporary threading algorithms, as assessed by its
performance on standard benchmarks. In future work, we

will apply this methodology both to structure prediction on
a genomic scale as well as to the problem of tertiary
contact and secondary structure prediction. Moreover, in
the way the algorithm is constructed, known experimental
restraints (e.g., disulfide bonds or nuclear magnetic reso-
nance restraints) can be readily integrated into this thread-
ing algorithm. This can be done both by biasing the pair
potential toward known contacts and by eliminating struc-
tures that do not satisfy the constraints in a post-
threading selection step. In preliminary results, this is
found to work quite well for some simple cases. Although
sequence profiles still play an important role in structure
prediction in the present threading algorithm, pair interac-
tions are seen to play a comparable role. They increase the
number of correctly identified Fischer pairs and increase
the Z-score of the correct sequence-structure matches.
Although this is not yet a purely structure-based thread-
ing algorithm, it represents a significant step in that
direction.
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