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Abstract: The tertiary structures of proteins have been solved in an increasing pace in recent years. To capitalize the 
enormous efforts paid for accumulating the structure data, efficient and effective computational methods need to be de-
veloped for comparing, searching, and investigating interactions of protein structures. We introduce the 3D Zernike de-
scriptor (3DZD), an emerging technique to describe molecular surfaces. The 3DZD is a series expansion of mathematical 
three-dimensional function, and thus a tertiary structure is represented compactly by a vector of coefficients of terms in 
the series. A strong advantage of the 3DZD is that it is invariant to rotation of target object to be represented. These two 
characteristics of the 3DZD allow rapid comparison of surface shapes, which is sufficient for real-time structure database 
screening. In this article, we review various applications of the 3DZD, which have been recently proposed. 
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INTRODUCTION 

 The tertiary structure of proteins provides important clues 
for understanding function, evolution, and interaction of the 
proteins and also serves as the basis for protein design. Such 
use of structure information is enabled by computational 
methods which can effectively identify similarity and dis-
similarity in protein global and local structures. As the num-
ber of solved protein structures keeps increasing in a rapid 
pace (http://www.rcsb.org), the speed of a computational 
method is becoming an important factor so that the method is 
able to scan the entire database in a reasonably quickly. 
Conventionally, protein structures are compared in terms of 
their main-chain conformation [1,2], inter-residue distances 
[3], spatial arrangement of the secondary structures [4], and 
the atomic detailed structures [5]. Several review articles [6-
8] provide more information about existing protein structure 
comparison methods to readers. Each protein representation 
has its own strength and has a suitable range of structure 
similarity and the evolutional distance, which it can capture 
most meaningfully. 

 Here, we review application of protein surface represen-
tation using moment-based descriptors, namely, the 3D 
Zernike descriptors (3DZD) [9,10]. The 3DZD is a mathe-
matical series expansion of a 3D function. It has several ad-
vantages which can broaden the applicability of computa-
tional analysis of protein structures. Note that computational 
works handling protein surface representation are not new; 
related works can be found from 1970’s [11,12]. It is the 
moment-based descriptors that are introduced to the protein 
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bioinformatics field recently. Thus, the purpose of this article 
is to demonstrate the attractive features of the 3DZD, which 
are not equipped with most of the other surface representa-
tions, through several examples of its applications. 

 Before moving to the description of the 3DZD and its 
recent applications, we will briefly overview methods for 
constructing and representing protein surfaces. To start with, 
one should define the protein surface from the PDB file [13] 
of the protein, which provides the Cartesian coordinates of 
atoms. The Connolly surface is one of the common ways to 
represent molecular surface [14], which rolls a probe sphere 
on protein surface atoms and trace the center of the probes to 
construct a surface. An alternative method is to overlap the 
3D Gaussian function at each atom of proteins [15]. The 
geometry of the defined surface can be represented, for ex-
ample, by a graph where each node is characterized with 
geometric features of that point, such as the normal vector 
and surface curvature [16]. The graph representation allows 
employing existing graph matching algorithms to make 
comparison between surface shapes. Other methods include 
the spin image method [17], where a surface point are char-
acterized by a 2D histogram of distances to the other surface 
points. Alternatively, one can use a voxel representation 
[18], where a protein surface or the entire volume is place on 
a 3D grid and occupied voxels (grid points) by the protein 
are marked (typically with an integer of 1 and 0 otherwise). 
For more information, refer to some review articles [19, 20].  

 Compared to the existing surface representations, the 
3DZD has following advantageous features [21]: Since it is a 
series of coefficients assigned to terms in the series expan-
sion of the 3D function (here the 3D structure of a protein 
surface is considered as the 3D function), the protein surface 
is represented very compactly as a vector of numbers. 
Moreover, the mathematical derivation of the 3DZD makes it 
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rotationally invariant, that is, the orientation of a protein does 
not affect to its 3DZD. Therefore, time-consuming alignment 
of proteins is not required for comparing them and thus the 
3DZD of all known proteins can be precomputed and stored. 
As we will discuss below, a real-time search against the en-
tire PDB database, which has over 100,000 chains, is made 
possible taking advantage of these two features [22,23]. The 
3DZD can also naturally represent surface physicochemical 
properties, such as the electrostatic potential and the hydro-
phobicity, by assigning such values to the protein surface 
regions [24]. Lastly, by changing the order of the series ex-
pansion, the resolution of the surface representation can be 
easily controlled. 

 The next section explains the mathematical derivation of 
the 3DZD. The applications of the 3DZD, namely, protein 
global structure comparison, surface property comparison, 
local surface classification, binding ligand prediction by 
pocket shape comparison, and protein-protein docking pre-
diction, are discussed in the subsequent sections. 

3D ZERNIKE DESCRIPTORS 

 The 3DZD is a mathematical series expansion of 3D 
function, which project a 3D object to a compact representa-
tion. The mathematical foundation of the 3D Zernike mo-
ments is laid out by Canterakis [9]. Then, Novotni and Klein 
applied it in the form of 3D Zernike descriptor for 3D object 
retrieval [10]. For readers’ convenience, a brief mathematical 
derivation of is provided. For detailed derivations and dis-
cussions, refer to the two papers [9,10] . 

 The first step in computing the 3DZD is deriving 3D 
Zernike moments. The 3D Zernike moments are series ex-
pansion of an input 3D function, f(x), where x = (x, y, z), into 
3D Zernike polynomial. In the case of representing a protein 
surface shape, f(x), should be the description of the surface 
shape, which can be computed by placing the protein struc-
ture onto a 3D grid and marking voxel points with 1 where 
the protein surface intersects and with 0 otherwise. For rep-
resenting physicochemical properties on protein surface, e.g. 
the surface electrostatic potential or the hydrophobicity, we 
map the value of the property instead of 1 or 0 [24].  

 The 3D Zernike polynomials defined on order n, degree l, 
and repetition m, are given by 

Znl
m (r, , ) = Rnl (r)Yl

m ( , ) ,          (1) 

subjected to l < m < l , 0 l n , and )( ln  being even. 

Spherical harmonics,  ),(Ym
l , are functions of a set of a 

polar angle, , and an azimuthal angle, . The radial 

function defined by Canterakis, (r)Rnl , directly incorpo-

rates radius information, r, into the basis function and are 

constructed so that Znl
m (r, , )  are polynomial, Znl

m (x) , 

when transformed to the Cartesian coordinates system. The 

3D Zernike moments of )(xf are defined as the coefficients 

of the expansion in this orthonormal basis, i.e. by the for-
mula: 
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m

=
3
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 After generating the 3D Zernike moments, taking the 
norm of 3D Zernike moments yields rotation invariance. 
That is, the moments are collected into (2l+1) dimensional 
vectors nl
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 The size of the 3DZD is determined by the parameter n 
called the order, which determines the resolution of the de-
scriptor. The 3D Zernike descriptor is a series of invariants 
(Eqn. 3) for each combination of n and l, where n ranges 
from 0 to the specified order. The 3DZD can be further nor-
malized by dividing each value in the descriptor with the 
norm of the descriptor. This normalization is found to reduce 
dependency of 3DZD to the number of voxels used to repre-
sent a protein [23]. 

PROTEIN GLOBAL SHAPE COMPARISON 

 The first application of the 3DZD we introduce is protein 
global structure comparison [23,25]. Conventional structure 
comparison methods, e.g. ones which compare protein main-
chain orientation, are essentially designed to compare a pair 
of protein structures and thus it takes a significant time to 
perform a whole PDB database scan to find similar structures 
for a query structure. Indeed, the current PDB website 
(http://www.rcsb.org) only provides keyword searches and 
sequence-based homology searches (BLAST [26]) but does 
not have functionality to search proteins with structural simi-
larity. This is very different from public sequence databases 
where sequence similarity searches can be performed in a 
real-time. The 3DZD is very suitable for fast structure data-
base search due to the two advantages: First, because it is 
rotation invariant, the 3DZD for proteins in the database can 
be precomputed. Thus, time consuming structure alignment 
is not needed for comparing structures. Second, the 3DZD 
represents a structure as a vector of coefficients of the series 
expansion (concretely, a vector of 121 float numbers in our 
work [23]), hence comparison of structures can be done very 
fast, just by comparing two vectors. 

  We have performed a thorough study of the protein 
structure comparison with the surface representation using 
the 3DZD [23]. To investigate how well the surface repre-
sentation using the 3DZD agrees with existing methods, we 
used the protein structure classification dataset computed by 
the Combinatorial Extension algorithm (CE) [2], which 
compares the main-chain orientation of proteins. The dataset 
consists of 2432 proteins which are pre-classified by CE. As 
described above in the subsection of the 3DZD, the 3DZD 
was computed for the Connolly surface of each protein struc-
ture in the CE dataset (Fig. 1).  

 Comparison of two protein structures was achieved by 
computing the Euclidian distance between their 3DZDs. We 
have also used the correlation coefficient and the Manhattan 
distance, which gave similar results as the Euclidean dis-
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tance. The results are summarized in Table 1. Overall, the 
3DZD agrees well with the structure classification by CE, 
retrieving a protein of the same main-chain conformation 
(defined by CE) within the top 5 closest structure in the 
89.6% of the cases. Interestingly, the agreement between the 
3DZD and the CE is much higher than between CE and 
DALI [3] (we used the standalone DaliLite program [27]), 
which is another popular protein structure comparison pro-
gram that compares the distance map of proteins (Table 1). 
The 3DZD is over 1000 times faster than DaliLite. In our 
original paper [23], we have also compared with four exist-
ing 3D shape comparison methods developed in the com-
puter graphics and engineering domain for 3D object com-
parison, namely, the spherical harmonics descriptor [28], the 
shape distribution histogram [29], the solid angle histogram 
[30], and the Eigen-value model [30], all of which turned out 
to perform significantly worse than the 3DZD (Fig. 4 in the 
paper [23]). 

 The agreement with the conventional main-chain com-
parison (CE) can be further improved by computing the 
3DZD of the surface of main-chain atoms (i.e. the side-chain 
atoms are removed before computing the Connolly surface 
and the 3DZD) [31] (Fig. 2). As shown in Fig. (2), the 
3DZDs do not differ much between the all surface represen-
tation and the main-chain surface representation. However, 
in terms of the database retrieval against the CE dataset, the 
Area Under the Curve (AUC) value of the precision-recall 
graph improved from 0.481 to 0.604 (Fig. 3). Random re-
trieval yields the AUC value of 0.017. Note that this is not a 

Receiver Operator Characteristic (ROC) curve, where a ran-
dom retrieval has an AUC value of 0.5. 

 We have developed a web server, named 3D-SURFER, 
where users can perform real-time protein structure search 
against the entire PDB database [22] (http://kiharalab.org/3d-
surfer). A query against the entire PDB, containing over 
130,000 single chains, takes, on an average, only a couple of 
seconds. The web interface displays the CATH code [32] of 
retrieved structures and structural alignments using the CE 
program. In addition, geometrically interesting local features 
of the protein surface, such as pockets that often correspond 
to ligand binding sites as well as protrusions and flat regions, 
can also be identified using the VisGrid algorithm [18].  

LOW-RESOLUTION STRUCTURE DATA COM-

PARISON 

 The surface representation of the 3DZD can be also natu-
rally applied for comparing low-resolution structure data 
from the electron microscopy (EM) [31]. In recent years, an 
increasing number of protein complexes have been investi-
gated by cryo-electron microscopy. Since the EM can usu-
ally provide only low-resolution structures, it is an important 
task to computationally identify known structures which can 
fit to the EM density map [33,34]. For the representative set 
of 2327 proteins taken from the CE dataset, we have com-
puted EM density map with the pdb2mrc program in the 
EMAN package, which simulates the EM density of protein 
structures [35]. Then, the isosurface of the EM density is

 

 

 

 

 

 

Fig. (1). The steps to compute the 3DZD for protein global surface structure.  

Table 1. Summary of the Global Protein Structure Retrieval 

  Top1
a)

 Top5 Top10 Execution Time
b)

 

3DZD c) 1881 (77.3%) 2179 (89.6%) 2264 (93.1%) 1.46x10-4(s) 

DaliLite d) 307 (12.6%) 696 (28.6%) 897 (36.9%) 3.21 (s) 

Random e) 117 (4.8%) 508 (20.9%) 806 (33.1%) N/A 

a) The number of query proteins which retrieved a correct member in the same group as the first position, within top 5 or top 10. In the parentheses, the percentage among all the 
2432 proteins in the benchmark set is shown. 
b) Average execution time for pair wise comparison (excluding time for preprocessing) in seconds. The evaluation was performed on Intel core2 CPU 6400 @ 2.13GHz processor 

with 5GB memory. 
c) The Euclidean distance is used to compare the 3DZDs.  

d) DaliLite (version 2.4.4) was used. The distance d is defined as d = 100 – (the structure similarity Z-score by DaliLite). 
e) A random value between 0 and 1 is assigned as the distance between the query to each protein. 
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Fig. (2). Example of the surface representation and the backbone representation of protein 9ldbA. The figure in the top left is the surface rep-
resentation using all atom in the protein, AASurf, and figure in the top right is the backbone representation of the protein. The bottom graph 
shows the 3D Zernike descriptors for the two representations. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Precision-recall graphs of the all surface representation (AASurf) and main-chain representation (backbone) measured on the CE 
classification dataset. The Euclidean distance is used. The AUC values for the curves are written inside parentheses. Note that unlike the AUC 
value of the receiver operating characteristic (ROC), the random retrieval yields a much smaller value (in this case 0.017) in a precision-recall 
graph. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Retrieval results of simulated EM density maps. The EM density maps were simulated with EMAN2 package using a resolution of 
15Å. The protein surface was generated by taking iso-surface regions of density value 10. 
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Table 2. Examples of Database Search of Protein EM Maps 

Query 1a2aA 1bev1 1c3aA  

 Hits Euc dist
a)

 Group
 b)

 Hits Euc dist Group Hits Euc dist Group 

1st 1m8t-A 10.555 Y 1fpn-1 10.039 Y 1fvu-B 10.543 Y 

2nd 1god-A 11.395 Y 1eah-1 10.042 Y 1iod-B 10.967 Y 

3rd 1vhb-A 11.408 N 1bev-3 11.419 N 1ixx-E 11.280 Y 

4th 1a3f-B 11.427 Y 1mqt-A 11.897 Y 1js9-A 12.915 N 

5th 1fe5-A 11.538 Y 1wer 11.935 N 1coj-A 13.468 N 

The PDB code of the top 5 hits are shown.  
a) The Euclidean distance of the 3DZD between the query and the retrieved protein.  
b) Y is shown for structures in the same structure group as the query.  N, for otherwise. 

 

represented by the 3DZD. As we performed for the protein 
structure database search, given the 3DZD of a query EM 
isosurface of a protein, we ranked entries in the dataset by 
the Euclidean distance to the query. The three examples of 
the searches are shown in Table 2 and Fig. (4). It is shown in 
Fig. (4) that similar EM maps are retrieved for all the three 
queries examined. Among the five closest EM maps re-
trieved, the first two of them are indeed from the proteins of 
the same structure group (Table 2). The overall AUC value 
of the precision-recall graph was 0.489, which is similar per-
formance to the protein structure retrieval by the 3DZD (Fig. 
3). 

REPRESENTING PROTEIN FLEXIBILITY, SUR-

FACE PHYSICOCHEMICAL PROPERTIES 

 In the application for the global surface shape compari-
son, binary values (1 or 0) are assigned to voxels to represent 
static shape of protein surfaces. Instead of binary values, 
decimals can be used to represent positions of atoms prob-
abilistically to describe flexibility or uncertainty of atom 
positions at a certain degree [36]. 

 In the same way, physicochemical property values, such 
as the electrostatic potential values or hydrophobicity values, 
can be mapped on the surface voxels, which can be then rep-
resented with the 3DZD [24]. Using the 3DZD, a quantita-
tive comparison of the physicochemical properties is possi-
ble. In our work, we showed that a similarity of the surface 
electrostatic potential patterns of thermophilic and meso-
philic proteins can be quantified and classified.  

BINDING LIGAND PREDICTION BY COMPARING 

POCKET PROPERTIES 

 The previous sections have discussed the use of the 
3DZD for representing and comparing the global shape and 
physicochemical properties of proteins. In this section, we 
show an application of the 3DZD for comparing local sur-
face shape and properties of proteins, namely, protein ligand 
binding pocket sites [37]. Binding ligand molecules is an 
important aspect of protein function and hence several meth-
ods have been developed for either detecting geometrical 
pockets as potential ligand binding sites of proteins 
[18,38,39] or for predicting the ligand molecule which binds 

to a specific pocket region of a query protein [40]. This work 
is focusing for the latter problem. Concretely, given a pocket 
region in a query protein, we predict which ligand molecule 
binds to the pocket region by comparing the pocket with a 
reference set of known pocket shapes. 

 A binding pocket surface is defined by the Connolly sur-
face of protein heavy atoms which locate within a certain 
distance to any heavy atom of the bound ligand (Fig. 5A). In 
addition to the 3DZD (Fig. 5B), we have also used the 
Pseudo Zernike moments (PZM) to represent binding pock-
ets and compared its performance to the 3DZD. In contrast to 
the 3DZD, which handles a pocket as a 3D function in the 
space, the PZM represents a binding pocket as a spherical 
panoramic 2D picture from its center of gravity, to which 
PZM is applied. The PZM [41] are used in many pattern rec-
ognition applications to describe the shape of a 2D image. 
Formally, the PZM are projections of a function on a set of 
complete and orthogonal basis polynomials defined over the 
unit circle (x2+y2 1): 
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where = x2
+ y2 , )/(tan 1 xy= , and n 0, |m| n. The 

PZM of the order n and the repetition m for a 2D image f(x, 
y) are defined as: 

An,m =
n +1

x2
+ y2 1

f (x,y)Vn,m
* (x,y)dxdy     (5) 

The asterisk (*) denotes the complex conjugate. 

 To obtain the 2D picture of a pocket, first, a ray-casting 
strategy is used to represent a pocket as seen from the center 
of gravity. Then, a three dimensional Cartesian coordinate 
system is set in a way that the x  axis points toward the 
pocket opening. ),( zy  can be determined arbitrarily as long 
as ),,( zyx is orthogonal, since the PZM is rotationally in-
variant. Using spherical coordinates, f( , ) is defined as the 
Euclidean distance from the center of gravity to the outer-
most surface of the pocket, and 0 if not intersection occurs. 
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Fig. (5C) shows an example of the resulting 2D picture of a 
pocket, where (x, y) = ( , ) (Fig. 5C). Finally, the PZM is 
computed for the 2D picture (Fig. 5D). The surface electro-
static potential can be also represented in the same way by 
assigning the electrostatic potential value rather than the 
Euclidean distance to each direction of the 2D picture. 

 Since both 3DZD and PZM are vectors, the similarity of 
two pockets is inexpensively computed by computing the 
Euclidean distance between them. For predicting binding 
ligand for a query pocket, we used a k-nearest neighbor (k-
NN) classifier with weighted voting [37]. After ranking 
pockets in the reference dataset by the pairwise distance to 
the query pocket, the k closest pockets are used to compute 
the score for each ligand type, F (ATP, NAD, heme, galac-
tose, etc.): 

Pocket _ score(F) = l (i ),F log
n

ii = 1

k l (i ),F

i = 1

k

l (i ),F

i = 1

n ,        (6) 

where l(i) is the ligand type of the i-th pocket, n is the total 
number of pockets in the reference dataset, and the indicator 
function X,Y equals to 1 if X is of type Y, and is null other-
wise. The first term in this scoring function assigns loga-
rithmically decreasing weights to pockets which bind ligand 
F, as the rank i of the pocket goes lower. The second term 
balances the score by taking into account the number of 
pockets of type F in the reference dataset. The scoring func-
tion is computed for each ligand type, and the ligand with the 
highest Pocket_score is predicted to bind to the query 
pocket. Using cross-validation on a test dataset consisting of 
100 proteins [37], optimal parameters were estimated for the 

descriptors: the values w = 4.5 (resp. 0.04) and n = 4 (20) 
were chosen for the PZM (resp. 3DZD). The number of 
neighbor, k in Eqn. 6 was set to k = 24 for both descriptors. 

 In our paper [37], we examined the performance of our 
binding ligand prediction method, named Pocket-Surfer, on a 
couple of datasets including the one used previously by Kah-
raman et al. , which has 100 ligand binding pockets of nine 
different ligand molecules [40]. We examined the effect of 
different parameter values on the performance and also in-
vestigated the use of the surface electrostatic potential in-
formation together with the pocket shape information. Re-
sults were also shown for the cases when unbound pockets 
were used as queries. It was shown that the Pocket-surfer 
performs better than a similar method which employs the 
spherical harmonics [40]. 

 Here, we show performance comparison of Pocket-surfer 
with four existing web servers, eF-Seek [42], SitesBase [43], 
PROSURFER[44], and XBSite2F [45]. To this end, we pre-
pared a dataset of 118 proteins (pockets), which are com-
monly included among the datasets of all the five methods. 
This dataset includes 18 different types of ligands, such as 
adenosine (AND), adenosine-triphosphate (ATP), fructose 6-
phosphate (F6P), flavin mononucleotide (FMN), flavin-
adenine dinucleotide (FAD), and guanine (GUN). Each of 
the pockets in the dataset was searched against the rest, and 
evaluated if pockets of the same type are retrieved. The per-
formance is evaluated with the area under curve (AUC) 
value defined from the receiver operating characteristic 
(ROC) curve and the Top-3 accuracy. The Top-3 accuracy is 
defined as the number of pockets for which the correct 
ligand is found within the three highest scoring ligands di-
vided by the total number of pockets in the common dataset 
(i.e. 118). Results are summarized in Table 3. On this 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Examples of the binding pocket representation by the 3DZD and the PZM. A, a FAD binding site of glutathione reductase (PDB: 
3grs). B, The 3DZD of the binding site. C, the 2D picture of the pocket. The grayscale shows the distance from the center to the pocket sur-
face. The darker, the more distance. D, the PZM of the 2D picture.  
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dataset, the 3DZD showed the best performance with an 
AUC value of 0.86 and the top-3 accuracy of 75.0%. The 
PZM of the Pocket-Surfer method gave the second rank in 
both metrics. 

 The PZM and the 3DZD run very fast among the meth-
ods compared. Searching against the 62,200 pockets, the size 
of the current PDB database, would only takes 0.7 and 6.85 
seconds respectively, on a Linux machine with Pentium 4 
3.0GHz CPU [37]. We also listed the execution times for the 
webservers in Table 3. But note that the various conditions 
are different among the servers, including the size of the 
database they have, most probably the specification of the 
computers, and the speed of internet connection. Particularly, 
it appears that the PROSURFER and SiteBase servers pro-
vide precomputed results for existing PDB entries and do not 
accept user uploaded structures. Therefore, the time for these 
two servers is probably not actual computational time for 
scanning the database. 

CLASSIFICATION OF LOCAL PROTEIN SURFACES 

 In a subsequent work [46], we have further applied the 
local protein surface representation by the 3DZD for charac-
terizing and classifying protein local surfaces. Unlike the 
previous section which only considers ligand binding pock-
ets, local surfaces were taken from entire surface of proteins. 
The local surfaces are defined as the surface region within 
6Å from the center of the local surface region. In total of 
118,003 local surface patches were obtained from 609 repre-
sentative proteins. A patch was characterized by two fea-
tures, the geometric shape and the electrostatic potential, 
both of which were described by the 3DZD. We used the 
emergent self-organizing map (ESOM) [47,48], a variant of 
self-organizing map, for classifying the local surface patches. 
After obtaining initial groups of local surface patches by the 
ESOM, we have further clustered the patch groups, which 
finally resulted in 48 clusters when the surface shape is con-

sidered and 27 clusters for the combination of the surface 
shape and the electrostatic potential. It was shown that sur-
face patches of the same type were found consistently at 
equivalent positions at ligand binding sites of the same 
ligand in different proteins. Fig. (6) illustrates such an exam-
ple of equivalent patches which are found at heme binding 
sites of two different proteins.  

 The resulting clusters have several interesting applica-
tions. The clusters can be used as surface “alphabet”, with 
which protein surface can be labeled and classified. Thus, a 
surface region, for example, a protein-docking interface or a 
DNA binding site, can be described as a set of surface alpha-
bets. This description of protein surface with a set of letters 
would enable a variety of protein surface analyses, such as 
classification, function prediction, and database searches, in 
analogous ways to protein sequence analyses. 

PROTEIN-PROTEIN DOCKING PREDICTION 

 For the last section of this article, we discuss application 
of the 3DZD to protein-protein docking prediction [49]. Ap-
plications in the previous sections use the 3DZD for captur-
ing similarity of global or local surface properties of pro-
teins. In contrast, in the application for protein docking, we 
capture shape complementarity of docking interface of pro-
teins. Since we use the3DZD to describe only surface re-
gions of proteins treating the inner region of proteins empty, 
perfectly fitting interfaces of two docking proteins have 
identical 3DZDs (i.e. the 3DZDs show the Euclidean dis-
tance of 0 and the correlation coefficient of 1.0). In actual 
cases of protein complexes, docking interfaces of two pro-
teins may not be perfectly complementary to each other, es-
pecially when interfaces of unbound structures are evaluated. 
However, our results on fifteen bound and unbound protein 
pairs showed that their docking interfaces (defined as a set of 
surface grid points within 4.5Å to any atoms of the other 
protein) showed sufficient shape complementarity with 

Table 3. Performance of Binding Ligand Prediction 

Method Representation Type Retrieval Method ROC-AUC 
Top-3 Prediction 

Accuracy (%) 
Execution Time

 b) 

Pseudo-Zernike 

(Pocket-surfer) 
2D moments k-NN 0.74 53.3 0.7 s 

3D Zernike  

(Pocket-surfer) 
3D moments k-NN 0.86 75.0 6.85s 

eF-Seek Graph Clique detection 0.49 25.0 ~ 2 h 

SitesBase Geometric hashing Geometric matching 0.60 a) 49.3 ~ 1 s c) 

PROSURFER Fingerprinting Pair-wise 0.57 a) 39.6 ~ 10 s c) 

XBSite2F Fingerprinting Pair-wise 0.55 32.8 ~ 1 min 

a) The AUC values for SitesBase and PROSURFER have a standard deviation of 0.02 due to incomplete ranking of dataset for some queries, see the benchmark methodology in 
our paper [37].  

b) For the PZM and the 3DZD methods, an estimated search time for a database of 62,200 binding sites is given in the parentheses. For the other methods, we used the following 

webservers, since standalone programs are not available for them: eF-Seek, http://ef-site.hgc.jp/eF-seek/; SitesBase, http://www.modelling.leeds.ac.uk/sb/; PROSURFER, 
http://dsearch.dip.jp/top; XBSite2F, http://202.127.30.184:8080/bssf/search.jsp. For the servers, we give an order of magnitude of the execution time, as their database sizes are 

not identical but of the similar order to 62,200. The number of entries of the webservers is: eF-Seek, 17,500; SitesBase, 33168; PROSURFER, 48,347; Xbsite2F, 13,227.  
c) It appears that the servers return pre-computed results to a limited number of queries. Thus probably this is not the actual computational time to scan the database. 
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3DZD correlation coefficient values of over 0.9 in almost all 
the cases. 

 Using the 3DZD for capturing shape complementarity at 
docking interface, we developed a docking algorithm, LZerD 
(Local 3D Zernike descriptor-based Docking program) [49]. 
LZerD uses the 3DZD and some other parameters as regional 
features of protein surface shape for scoring docking decoys, 
which are generated by geometric hashing algorithm [50]. In 
the following, we will present a brief description of the over-
all LZerD algorithm. 

 The first step in LZerD is to extract evenly distributed 
points on the protein surface at a minimum separation of 
1.8Å. The geometry of each point is characterized by two 
features, namely, a normal vector for representing the direc-
tion of the local region and the 3DZD which is computed for 
a local spherical patch of 6Å radius centered at the point. 
Obviously, the 3DZD is used to capture the local surface 
shape of each surface point. 

 Once the shape of local regions is described, LZerD is 
aimed to find local regions of the two proteins (receptor and 
ligand proteins) that are complementary to each other and 
compute the pose of the two proteins so that the two regions 
fit. For searching poses of proteins, we apply a geometric 
hashing algorithm. The algorithm is divided in two stages: 
hashing and recognition. In the hashing phase, surface points 
from the ligand protein are stored in a hash table after trans-
formed under each orthonormal coordinate frame defined 
using two surface point. An orthonormal coordinate frame is 
defined by taking a pair of surface points from the ligand 
protein plus a vector obtained by averaging the normal vec-
tors of the two points. More formally, given points a and b 
and their corresponding normal vectors, we calculate 

 

d =
an + bn

2
and create a Cartesian frame where point a is 

taken as the origin,  U = AB as the x-axis,  V = AB d as the y-
axis, and the z-axis is the cross-product of the other two 

axes N = U V . Such reference frames will be created for 
every pair of points on the ligand surface. Then, all points 
within 15Å of either point will be transformed to that coor-
dinate system and stored in the hash table. Fig. (7) outlines 

the general process of selection two points a and b, selecting 
all neighbor points ni and the corresponding transformation 
based on the reference frame. For the docking problem, a 
standard hash table implementation was found to be ineffi-
cient because of the non-uniform distribution of the data in 
hash-space, which leads to a longer search time. Therefore, 
LZerD uses kd-tree, a data structure that partitions point sets 
recursively for efficient search. This is a specialization of a 
binary tree that partitions the k-dimensional space using hy-
per-planes. For example, for k=3 (as is the case in LZerD), 
the first partition corresponds to all the elements that are 
lower or higher than the first dimension of a node (x coordi-
nate value), and the second partition is determined by the 
values for the second dimension of the node values, and so 
on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Illustration of the hashing stage. Points a and b are selected 
to create a new reference frame and neighbors within 15Å of the 
points are selected. 1), points a and b are expressed in the original 
coordinate system along with two neighboring points. A new coor-
dinate system is created based on a and b, 2). Neighbors n1 and n2 
are transformed to the new coordinate system in 3) and 4), respec-
tively. 

 

 

 

 

 

 

 

Fig. (6). Examples of local surface patches. The figure illustrates the three pairs of patches locating at two heme binding sites of proteins 
(1dk0A, left; 1d7cA, right). The patches of the same gray scale level indicate that they are similar and belong to the same group. The num-
bers shows the similarity between the patch pairs, which is defined as 1 - correlation coefficient of the 3DZD of the two patches. 
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 Next, the recognition stage uses the previously created 
kd-tree to compare the shape of regions in the ligand against 
regions taken from the receptor proteins. Thus, the same 
process will be performed for every pair of points on the 
receptor to define reference frame, along with transforma-
tions of points. Transformed points on the receptor for each 
reference frame will be queried against the ligand kd-tree in 
order to retrieve geometrically similar points. If sufficient 
number of points is considered to be similar for a reference 
frame in terms of the local 3DZDs, normals, and point dis-
tances, then the ligand and the receptor proteins are trans-
formed to compute the docking pose. Poses which produce 
too many clashes between the ligand and receptor proteins 
are eliminated. The docking poses are finally evaluated and 
ranked by a scoring function which combines terms which 
consider the local shape complementarity (matches of 
3DZDs), directions of normals, the size of formed docking 
interface, and atom clashes (penalty). 

 Fig. (8) shows the prediction results of LZerD on the 84 
unbound protein complexes taken from the ZDOCK bench-
mark set [51]. A docking prediction for a protein complex is 
considered to be successful if at least one of the decoys (pre-
dicted conformations) within the top n ranks has an interface 
RMSD (the root mean square deviation computed for resi-
dues at docking interface) of 2.5Å or less. To test the per-
formance of the scoring function of LZerD, the scoring func-
tion was applied to rerank decoys computed with the 
ZDOCK docking program (termed ZDOCK Reranked). Re-
sults by three existing methods, ZDOCK, PatchDock [52], 
and Context Shape (CS) [53] were also shown for compari-
son (Fig. 8). ZDOCK and LZerD clearly outperformed CS 
and PatchDock on these unbound complexes. LZerD and 
LZerD Reranked ZDOCK decoys essentially showed similar 
performance to ZDOCK. When compared the rank of the 
first correct hit for individual target, LZerD was slightly bet-
ter than ZDOCK showing 33 better cases than ZDOCK pre-
diction as opposed to 24 opposite cases. The ZDOCK 
Reranked showed identical performance with original 
ZDOCK with both having 26 better cases against each other. 

 Additionally, a comparison of three sample executions of 
these docking programs is shown in Table 4. Unlike the 
global and local protein shape comparison by the 3DZD, the 
speed of LZerD is not particularly fast because the 3DZD is 

used to evaluate shape complementarity of docking decoys 
which are generated by geometric hashing. For two cases 
(1D6R and 2SNI), LZerD runs faster or in a comparable time 
with ZDOCK. In the third case (2PCC), LZerD executes 
considerably slower than ZDOCK. The execution time for 
the geometric hashing employed in LZerD depends on the 
number of critical points on the protein surface. Con-
textShapes and PatchDock are faster due to two main rea-
sons: the number of points and transformations analyzed are 
reduced before matching shapes by using clustering and hot 
spot analysis, and also they employ a fast method to calcu-
late clashes.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). The performance of LZerD on 84 complexes in the 
ZDOCK Benchmark 2.0. ZDOCK reranked cases refer to results of 
reranking ZDOCK decoys using the LZerD’s scoring function. 
Note that CS (Context Shapes) and Patchdock only report results 
for the top 3600 conformations in their corresponding papers. 

CONCLUSION 

 In this article, we overviewed applications of the protein 
surface representation using the 3DZD. Due to the rotational 
invariance and its compact representation, the 3DZD allows 
rapid real-time comparison for global and local protein sur-
faces, low-resolution structure data from electron micros-
copy or electron tomography. It also can identify comple-
mentarity of molecular surfaces, which was applied for pro-
tein docking prediction. Development of computational 

Table 4. Computational Time of Docking Prediction Methods 

PDB
a)

 
Length (Receptor/ 

Ligand)
b)

 
ContextShapes PatchDock ZDOCK LZerD

c)
 

1D6R 223/58 0:09:25 0:03:35 4:07:03 
2:43:33 

(418/999) 

2SNI 275/83 0:11:08 0:06:48 3:08:39 
3:33:53 

(417/1057) 

2PCC 341/341 0:13:48 0:16:04 4:04:16 
9:14:19 

(597/1291) 

The execution time is shown in the hours:minutes:seconds format. All the computation is performed on a Linux computer with Intel Core i7 CPU 2.67GHz. 
a) Three sample structures from the ZDOCK Benchmark 2.0. 

b) Number of residues in each of the receptor and ligand structures. 
c) The number of critical points for the receptor and ligand are reported in parentheses. 
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methods for analyzing 3D structures have been more com-
plicated than sequence analyses tools. We believe the 3DZD 
will be able to play an important role for lowering the barrier 
for computational analyses of tertiary structures of bio-
molecules.  
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