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Abstract The structural genomics projects have been

accumulating an increasing number of protein structures,

many of which remain functionally unknown. In parallel

effort to experimental methods, computational methods are

expected to make a significant contribution for functional

elucidation of such proteins. However, conventional com-

putational methods that transfer functions from homolo-

gous proteins do not help much for these uncharacterized

protein structures because they do not have apparent

structural or sequence similarity with the known proteins.

Here, we briefly review two avenues of computational

function prediction methods, i.e. structure-based methods

and sequence-based methods. The focus is on our recent

developments of local structure-based and sequence-based

methods, which can effectively extract function informa-

tion from distantly related proteins. Two structure-based

methods, Pocket-Surfer and Patch-Surfer, identify similar

known ligand binding sites for pocket regions in a query

protein without using global protein fold similarity infor-

mation. Two sequence-based methods, protein function

prediction and extended similarity group, make use of

weakly similar sequences that are conventionally discarded

in homology based function annotation. Combined together

with experimental methods we hope that computational

methods will make leading contribution in functional elu-

cidation of the protein structures.
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Abbreviations

PDB Protein Data Bank

3DZD 3 Dimensional Zernike descriptor

ATP Adenosine triphosphate

HEM Heme

NAD Nicotinamide adenine dinucleotide

FAD Flavin adenine dinucleotide

BTN Biotin

F6P Fructose 6-phosphate

GUN Guanine

PLM Palmitic acid

RTL Retinol

AUC Area under the curve

ROC Receiver operator characteristic

EF Enrichment factor

GO Gene ontology

PFP Protein function prediction

ESG Extended similarity group

AFP-SIG Automatic Function Prediction Special Interest

Group

ISMB Intelligent System in Molecular Biology

CASP Critical Assessment of Techniques for Protein

Structure Prediction
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Introduction

The structural genomics projects worldwide have deter-

mined an increasing number of protein tertiary structures

over a decade [1–4]. As of writing of this article (September

2011), there are over 9,000 structures in the Protein Data

Bank (PDB) [5, 6] that were deposited from the structural

genomics projects. Among several objectives of these large-

scale efforts, one of the major expectations is that the

determined structures provide clues for elucidating evolu-

tion and function of the proteins [7, 8]. In fact, function of

some targeted proteins in the projects have been elucidated

by global structure similarity to known characterized pro-

teins [9–12] or by a combination of structural comparison

and other sources, such as identified bound cofactors to the

structure [13] or biochemical experimental evidences [14].

Protein function should be ultimately investigated

experimentally. There are indeed efforts towards system-

atic functional screening [15, 16] and also efforts to com-

bine computational and experimental function assignments

in a genome-scale [7, 17]. In parallel to such experimental

method developments, computational function prediction

methods are expected to play an important role in post-

structural genomics functional elucidation given the fact

that computational methods can quickly screen existing

data, which is the basis of transferring function from

known proteins. Computational methods alone can often

sufficient evidences for inferring function of proteins [9–

12]. Also Experiments can be greatly benefited if possible

functions of uncharacterized proteins are suggested by

computational methods [17].

However, conventional computational methods which

transfer function from obvious homologous proteins, such

as BLAST [18, 19] or FASTA [20] or domain searches

[21], leave many protein structures with unknown function,

as evidenced in many structures with unknown function

deposited to PDB from the structural genomics projects.

Methods that predict function from globally similar pro-

teins work well when highly similar known proteins exist

in the database. Protein structures solved by the structural

genomics efforts, which are left behind in functional

annotation, do not have apparent global similarity to any of

known proteins. Therefore, to increase the annotation

coverage, it is crucial to develop methods which can use

local structure similarity or distantly related proteins.

In this article, we briefly review two avenues of com-

putational function prediction methods, i.e. structure-based

and sequence-based methods. The focus is on our recently

developed function prediction methods, local structure-

based methods and sequence-based methods, which can

effectively extract function information from distantly

related proteins that are discarded by conventional meth-

ods. For more general review of computational function

prediction, readers are referred to recent comprehensive

reviews [22–24].

Approaches for structure-based function prediction

Computational structure-based function prediction methods

transfer function of known proteins to a query protein if the

known proteins have global or local structural similarity to

the query. Structure-based function prediction methods can

be divided into global and local approaches. In principle,

global methods aim to find distantly related proteins of the

same fold to a query protein that are not detectable by

considering the sequence similarity [25–27]. Any methods

developed for protein structure comparison can be used for

this task, e.g. the Combinatorial Extension method [28],

Dali [29], SSAP [30], VAST [31], and COSEC [32]. More

recently, moment-based methods, the spherical harmonics

and the 3D Zernike descriptors (3DZD), have been applied

to describe protein surfaces [33–38]. Moment-based

methods describe a protein surface as a series expansion of

a 3D mathematical function that represents the protein

surface shape. Thus, a structure is compactly represented as

a vector of coefficients of the series function, which allows

a fast real-time structure database search. We showed that

some functional class of proteins, e.g. DNA binding pro-

teins, can be detected by surface comparison using the

3DZD, because the descriptors capture the surface shape

similarity that is required for the function of the proteins

(e.g. saddle like shape of DNA binding regions in DNA

binding proteins) [35]. Although global structure similarity

indicates functional similarity of proteins in most of the

cases, one needs to keep in mind that there are notable

exceptions of ‘‘superfolds’’ [39], which are commonly

occurring protein folds that are adopted by various protein

families. Thus, conservation of functional residues needs to

be confirmed before transferring function to a query protein

from a known protein of the same global fold.

In contrast to the global structure comparison methods,

local structure-based approaches compare local regions of

a query protein to a database of known functional sites, e.g.

active sites of enzymes. The Catalytic Site Atlas [40], AFT

[41], ASSAM [42], SPASM [43], SURFACE [44], FLORA

[45], CavBase [46], and SitesBase [47] search local sites

with a set of residues/atoms in a query protein that match

with known functional sites. Another method, eF-seek [48],

represents a protein surface as a graph with nodes char-

acterized with local geometry and electrostatic potentials,

and local regions in a query protein that are similar to

known functional sites are sought by a sub-graph matching

algorithm. Thornton and her colleagues explored the use of

the spherical harmonics in representing and comparing

protein pockets [49]. Binkowski et al. developed a method
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that characterize a pocket with conserved residues at the

pocket [50, 51] and also with its pairwise atom distances

[52]. The ProFunc server performs various structure- and

sequence-based function predictions for a query protein

structure ranging from sequence and structural motif

searches, active site identification, and global fold com-

parison [53]. Proknow is another method that integrates

multiple evidences for function prediction, such as

sequence and structure similarity and protein–protein

interactions [54]. The advantage of the local structure-

based methods over the global structure-based methods is

that the former could identify functional sites in a query

protein even when the query does not have evolutionary

closely related proteins in a database. To meet the urgent

task of annotating protein structures solved by the struc-

tural genomics projects that do not have apparent homol-

ogy to known proteins, we have recently developed local

structure-based methods, Pocket-Surfer [55] and Patch-

Surfer [56, 57]. These two methods will be overviewed in

the next section.

Pocket-Surfer and Patch-Surfer

Pocket-Surfer [55] and Patch-Surfer [56, 57] predict ligand

molecules that bind to a query protein by comparing the

geometrical shape and the physicochemical properties of a

pocket region of the query protein to a database of known

binding pockets. Both methods allow a quick real-time

scan of the database of binding pockets since they use a

rotational invariant pocket representation, which does not

require time consuming pre-alignment of pockets upon

comparison. Technically, the rotational invariant repre-

sentation is achieved using the 3DZD, a rotation invariant

series expansion of a 3D function [58, 59]. The difference

between Pocket-Surfer and Patch-Surfer is that the former

represents a pocket as a single object while the latter rep-

resents a pocket with a set of surface patches, each of

which captures features of local regions of the pocket

surface. Figure 1 illustrates the query process of Pocket-

Surfer (Fig. 1a) and Patch-Surfer (Fig. 1b).

The first step of the binding ligand prediction for a query

protein by Pocket-Surfer and Patch-Surfer is to generate

the surface of the protein from its PDB file and to extract

binding pockets from the surface. The surface of the pro-

teins is determined by the boundary of solvent accessible

and solvent excluded regions generated by the Adaptive

Poisson-Boltzmann Solver (APBS) program [60]. If the

center location of binding pockets in the query protein is

not known, it can be predicted with an external pocket

finding program, such as VisGrid [61] or LIGSITE [62].

The extent of a pocket surface is computed by casting rays

from the predetermined pocket centers and selecting the

surface positions that are encountered first by the rays as

the pocket surface. Once a pocket is determined, Pocket-

Surfer encodes the geometrical shape and the surface

electrostatic potential of the whole pocket with 3DZDs. On

the other hand, Patch-Surfer segments the pocket surface

into patches. The segmentation is done by spreading seed

points on the pocket surface and extracting local surface

regions that are included within a sphere of 5 Å radius

centered at each seed point. For example, adenosine

Fig. 1 The flow chart of pocket search with Pocket-Surfer and Patch-

Surfer. a Pocket-Surfer. Pockets are encoded by the 3DZD. Examples

of the 3DZDs are shown in graphs on the right hand side. The x axis

of the plot indicates the position of terms in the series expansion and

the y axis is the value of the coefficients of the terms. The similarity of

two 3DZDs is computed as the Euclidean distance of the two vectors

of the 3DZDs. b Patch-Surfer. Since a pocket is represented by a set

of patches, first, similar patches from the two pockets are matched

using a bipartite matching algorithm. The similarity of two pockets

reflects the average similarity of the matched patches, the relative

position (distance) of patches within each pocket, and the size of the

pockets. The weighting factors, which are trained on the known

pockets in the database, are used for normalizing scores of different

properties at different patches by considering the distribution of the

scores
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triphosphate (ATP) binding pocket is represented with, on

average, 29.5 overlapping patches. Then, the shape, the

electrostatic potential, and the hydrophobicity of each

patch are mapped on a 3D grid, each of which is considered

as a 3D function and encoded with the 3DZD. Since the

3DZD is a vector of coefficients of each term in the series

function, the similarity of two 3DZDs can be efficiently

quantified by computing the Euclidean distance of the two

vectors. Another advantage of the 3DZD is that the series

expansion does not change with rotations of the target 3D

object (rotationally invariant). Thus, time-consuming pre-

alignment of pockets is not needed for comparison. For

mathematical details of the 3DZD, refer to the original

papers [35, 56, 58, 59].

Once the query pocket is encoded with the 3DZDs, it is

compared to the known pockets stored in the database.

Pocket-Surfer simply computes the Euclidean distance

between the 3DZD of the query pocket and the 3DZD of

the database pockets. The comparison of a pair of pockets

is more complex for Patch-Surfer since a pocket is repre-

sented by a set of patches. Patch-Surfer first identifies pairs

of similar patches from the two pockets by employing a

modified bipartite matching algorithm [63]. Then, the

similarity of the two pockets is quantified by a linear

combination of three terms, the average similarity of

matched pairs of patches, the relative distance of patches

within each pocket, and the size of the pockets. Next, the

existing pockets in the database are sorted by the distance

to the query pocket. Finally, the top k most similar pockets

are considered to make the final prediction of the binding

ligand for the query pocket using a type of the k-nearest

neighbour algorithm (essentially the algorithm takes

weighted consensus within the k highest ranking ligands).

Please refer to the original papers for the details of the

algorithm [56, 57].

Performance of Pocket-Surfer on benchmark datasets

We benchmarked the accuracy of pocket retrieval of

Pocket-Surfer on two datasets of ligand binding pockets

selected from PDB. The first dataset contains 100 proteins

that bind either one of nine different ligand molecules

including ATP, nicotinamide adenine dinucleotide (NAD),

flavin adenine dinucleotide (FAD), and glucose. The sec-

ond dataset contains 175 proteins that bind one of twelve

different ligand molecules. There are no overlap between

the ligand types and proteins in the two datasets. Pocket-

Surfer identified correct ligand types within top 3 ranks

75.6% of the cases for the first dataset and 61.5% for the

second dataset. These results were superior to other similar

moment-based methods compared in the study [55]. In

addition, comparison with existing binding ligand

prediction servers showed that Pocket-Surfer achieved the

highest value for the area under the Receiver Operator

Characteristic curve (AUC-ROC) [33]. Please refer to the

original papers [33, 55] for more detailed results of the

benchmark studies.

Patch-Surfer results on the representative binding

pocket database

Binding pockets of the same ligand type do not always

have similar global shape and physicochemical properties

at the corresponding location in the pockets [64]. This

divergence of properties of pockets can occur due to sev-

eral reasons: For example, some ligand molecules can take

different conformations upon binding. Also occasionally

water molecules or additional ligand molecules bind at the

same pocket, which results in the change of overall pocket

shape, size, and properties.

The intention of the patch-representation by Patch-Sur-

fer is to identify local surface regions that are consistent in

shape and/or physicochemical properties in pockets of the

same ligand type that do not have globally similar shape

and properties. Overall the performance of Patch-Surfer is

better than Pocket-Surfer in a benchmark study we con-

ducted on the dataset of 100 proteins that bind to one of

nine different ligand molecules [55, 56]. Pocket-Surfer

made correct binding ligand prediction for 36.1 and 82.7%

of the cases within top-1 and top-3 predictions (i.e. correct

ligand is predicted within top-1/top-3 highest scoring

ligands ranked by Pocket-Surfer), whereas Patch-Surfer’s

results were 45.0 and 86.0% for the top-1 and top-3 pre-

dictions, respectively. The area under the curve (AUC)

value of the receiver operator characteristic (ROC), a

metric to evaluate the overall database retrieval perfor-

mance [65], was 0.81 for Pocket-Surfer while 0.82 is

achieved by Patch-Surfer [56].

We have recently developed a larger database of rep-

resentative ligand binding pockets selected from PDB for

practical use of Patch-Surfer [66]. The representative

pockets were selected from the Protein-Small-Molecule

DataBase (PSMDB) [67]. Among several non-redundant

datasets of structures of protein–ligand complexes provided

in PSMDB, we chose the list available at http://compbio.

cs.toronto.edu/psmdb/downloads/CPLX_25_0.85_7HA.list

, where proteins were pruned with 25% sequence identity

and redundant ligands that have a Tanimoto coefficient of

0.85 or higher to other ligand molecules were filtered out.

Small ligands with less than 7 heavy atoms were not

included in this list. From this list, we further removed

ligands that are too distant from the protein (more distant

than 3.5 Å to any heavy atom in the protein) and also

covalently bound ligands (ligands that are closer than 1.4 Å
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to the protein). This procedure remains 9,393 pockets

(protein–ligand pairs) with 2,707 ligand types.

On this representative pocket database, we benchmarked

the retrieval performance of Patch-Surfer using a diverse

test set of query pockets that bind either FAD (10), HEM

(16), NAD (15), biotin (BTN) (8), fructose 6-phosphate

(F6P) (8), guanine (GUN) (10), palmitic acid (PLM) (24),

or retinol (RTL) (5) (Fig. 2). In the second parenthesis, the

number of query pockets of that type is shown (in total 96

query pockets). For each of these query pockets, pockets in

the database were ranked according to the similarity to the

query. Then, the retrieval was evaluated in terms of the

enrichment factor (EF), which describes the ratio of cor-

rectly retrieved pockets relative to the percentage of the

database scanned [68, 69]:

EFx ¼ NP=Nx

� �.
TP=TDB

� �
; ð1Þ

where TP is the total number of pockets that bind the same

ligand type P as the query in the database, TDB is the size of

the database, NP is the number of pocket for the ligand type

P ranked within the top X% by the database search method

(Patch-Surfer) and Nx is the total number of retrieved

pockets ranked in the top X% of the database. EF is a

commonly used metric for evaluating the database retrieval

for a large database, for example, in evaluation of methods

for drug database search in the cheminformatics domain.

The results are shown in Fig. 2a. At 0.1% retrieval (i.e.

considering top 9 pockets), all of the ligands except for two

smallest ligand types, F6P and GUN, have high EF values,

ranging from around 16.31 (NAD) to over 84.84 (RTL). At

1% retrieval, all of the ligand has EF over 5.0, from 5.13

(F6P) to 49.26 (RTL). The search against this large data-

base was, on average 5–6 min for a query. Having a high

EF at a low percentage of retrieval, as we achieved here, is

crucial when further computational or experimental vali-

dation of binding ligands are to be performed. It is entirely

feasible to perform around 100 computational ligand

protein docking with consideration of full ligand flexibility

[70] or experimental ligand screening in a realistic time.

Together with the other types of structure-based function

methods, Patch-Surfer as well as Pocket-Surfer will be

valuable tools for elucidating function of proteins whose

structure are solved by structural genomics efforts. We are

currently in the process of making Patch-Surfer available

for academic users [66] as a new component of the protein

surface comparison server http://kiharalab.org/3d-surfer/

[34]. Users will be able to submit a protein structure, from

which pockets regions will be identified and compared

against the above-mentioned representative known ligand

binding pockets.

Sequence-based function prediction methods that use

weakly similar sequences

Sequence-based function prediction methods are applicable

for a larger number of proteins than structure-based

methods. This is obviously because sequence information

is available for the majority of proteins and also because

most of function information is stored in sequence

databases.

As mentioned in Introduction, conventional methods

that are based on homology [18–20] or high sequence-

conservation (domains, motifs) [21, 71–73], cover only a

small portion of proteins in a genome in terms of function

annotation [22, 74]. In recent years, to meet the need of

assisting systems biology approaches that deals with a

large number of proteins, several novel sequence-based

methods have been developed that employ not only highly

similar but also weakly similar sequences as the source of

function information. The development of such new gen-

eration sequence-based approaches is supported by the

realization that weakly similar sequences still share func-

tional similarity in many cases [75–77] especially when a

Fig. 2 The enrichment factor

for eight types of ligand

molecules using Patch-Surfer

scanned against the

representative binding pocket

database. In total 96 query

pockets from eight ligand types

were used. a EF is shown

relative to the percentage of top

ranking pockets. The EF is

averaged for the same types of

ligand molecules. b The

structures of eight ligands used

as queries
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general level functional category is concerned [78, 79].

Such methods include those which use BLAST or PSI-

BLAST search results systematically by applying algo-

rithmic techniques and making use of the Gene Ontology

(GO) vocabulary structure [80] (e.g. Gotcha [81], GoFigure

[82], OntoBlast [83], PFP [78, 79, 84, 85], ESG [86], and

ConFunc [87]). Another direction of recent development is

to consider phylogenetic trees aiming more specific func-

tion prediction among protein subfamilies (e.g. SIFTER

[88], and FlowerPower [89]). JAFA is a meta-server which

combines predictions from different servers [90]. A list of

more methods for sequence-based function prediction can

be found in our recent articles [22, 23, 91].

In the later section we overview two sequence based

function prediction methods, protein function prediction

(PFP) [78, 79, 84] and extended similarity group (ESG)

[86] developed in our group as the examples of these recent

methods. PFP makes use of strongly as well as weakly

similar sequences to the query sequence and shows

improved sensitivity and coverage, whereas ESG draws

consensus from the multiple level neighborhoods of similar

sequences to improve the precision of predicted GO

annotations. Examples of function predictions by PFP

using weakly similar sequences are provided.

The protein function prediction algorithm

The PFP algorithm extracts function information (GO

terms) from sequences retrieved by PSI-BLAST including

very weakly similar sequences with an E-value of up to

100. This enables it to predict low resolution terms when

there are no homologous sequences available in the

database. GO terms are ranked by a raw score computed

using Eq. 2. The score for GO term fa is defined as

sðfaÞ ¼
XN

i¼1

XNfuncðiÞ

j¼1

� logðEvalueðiÞÞ þ bð ÞPðfajfjÞ
� �

ð2Þ

where N is the number of PSI-BLAST hits obtained for a

query sequence, Nfunc(i) is the number of GO annotations

for the sequence hit i, E-value(i) is the PSI-BLAST E-value

for the sequence hit i, fj is the jth annotation of the

sequence hit i, and constant b takes value 2 (= log10100) to

keep the score positive. The conditional probability P(fa|fj)

indicates the likelihood of having function fa as an anno-

tation for the query sequence given that fj is used to

annotate the sequence (function association). This function

association is computed as the ratio of co-occurrences of

terms fa and fj in annotations of the same proteins in the

UniProt sequence database [92] relative to the number of

times term fj is used to annotate proteins. Since the score

for a GO term is basically the sum of weights, -log(E-

value), of all sequences up to very weakly similar ones,

consensus annotations from the weakly similar sequence

hits can have a high score even if the annotations do not

exist in the top sequence hits. Figure 3 illustrates this

computation of the raw score for a GO term fa.

Along with this raw score computation, PFP also

transfers the scores of a GO term partially to its less spe-

cific parent GO terms in the GO hierarchy in proportion to

the ratio of the number of genes annotated by the child and

the parent terms. The raw scores are then converted into

p values using the background score distributions for each

term and are further translated into an expected accuracy

based on the benchmark dataset.

Fig. 3 An example of raw

score computation for GO term

fa by the PFP algorithm
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The extended similarity group algorithm

Extended similarity group (ESG) runs PSI-BLAST itera-

tively and advocates functional terms that occur consis-

tently in the series of PSI-BLAST database searches. The

algorithm is illustrated in Fig. 4. Starting from the query

sequence Q, we first obtain N sequence hits by a PSI-

BLAST search, S1, S2…SN, which have E-values E1,

E2…EN, respectively. Each sequence hit Si at the first level

is assigned a weight Wi given by Eq. 3, which consists of a

normalized E-value of Si with respect to E-values of all

other sequence hits. Then, further from each of the

retrieved sequences Si, PSI-BLAST is run again to retrieve

a set of sequence hits, Sij. The weight Wij for each second

level sequence is computed similarly as the weight Wi

assigned to the first level sequences.

Wi ¼ � logðEiÞ þ b

PN
j¼1

f� logðEjÞ þ bg
ð3Þ

Using the weights assigned to sequences retrieved in the

first level and the second level searches, the score of a GO

term fa for the query Q is computed as the sum of the

weights of sequences which have function fa:

PQðfaÞ ¼
XN

i¼1

Wi � PSiðfaÞ ð4Þ

PsiðfaÞ ¼ v � IsiðfaÞ þ ð1� vÞ �
XNi

j¼1

Wij � ISijðfaÞ ð5Þ

Equation 4 shows that the score of the GO term fa for a

query sequence Q (the probability that Q has the GO term

fa) is the weighted sum of Psi(fa), the score for fa assigned

to each sequences retrieved in the first level using the

Eq. 5. Now Eq. 5 shows that Psi(fa) is the sum of the score

ISi(fa), which is 1 when sequence Si is annotated with fa and

0 otherwise, and the weighted sum of the scores that come

from sequences retrieved by the second level search for

sequence i. The weighting factor v controls contributions

from sequences retrieved in the first level and those found

in the second level search.

Function prediction using PFP and ESG

PFP and ESG have been thoroughly benchmarked on

several datasets including a large one with 11 complete

genomes [78, 79, 86]. The benchmark studies for PFP

demonstrate its ability to make correct function predictions

even in the cases where the query sequence only has hits

with large E-values (i.e. insignificant E-values), e.g. E-

value of 10 or more in a PSI-BLAST search [78, 79]. By

making use of weakly similar sequence hits, PFP can sig-

nificantly increase annotation coverage of a genome. When

PFP was applied to 15 genome sequences, including

microbial genomes, Caenorhabditis elegans, mouse, Ara-

bidopsis, and human genomes, more than two-thirds of the

previously unknown proteins in each genome could be

assigned a GO function term at the highest confidence level

[79]. Predicted function derived mainly from only weakly

similar sequence hits are often of low resolution, i.e. GO

terms indicating somewhat general function categories that

locate at the shallower levels in the GO hierarchy.

However, these low resolution functions will be still useful

for guiding further detailed investigation of protein

function.

To illustrate PFPs’ ability to make correct predictions

out of weakly similar sequence hits, we showed in Table 1

four examples of PFP’s predictions which were computed

only from sequences with an E-value above 1.0 or 10.0.

Note that smaller E-value indicates more statistically sig-

nificant hits, and the commonly used E-value cutoff is 0.01

or 0.001. This is to simulate the situation that there are no

significant sequence hits in the PSI-BLAST search. The

first example is function prediction made for the sequence

of outward rectifying potassium channel protein TREK-1

(UniProt ID: O95069). PFP predicts inward rectifier

Fig. 4 Computing the probability score for GO term fa to annotate

the query sequence Q using two levels of ESG. In the initial run of

PSI-BLAST, N sequences are retrieved. Among them, S1, S3, and S4

are annotated with fa (colored in gray). From each of the retrieved

sequences S1 to SN, PSI-BLAST is run again, retrieving the second

level hits for each of them. S32, a sequence retrieved from S3, has

annotation fa. The overall score for fa is the sum of the weights for, S1,

S3, S4 and S32
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Table 1 Examples of correct annotations predicted by PFP using weakly sequence hits

UniProt ID GO

Annotations

Definition of the

GO terms

Relevant PFP

predictions

using E-

values [ 1.0

Definition of the

Predicted GO terms

Rank Relevant PFP

predictions

using E-

values [ 10.0

Definition of the

Predicted GO

terms

Rank

O95069

Outward

rectifying

potassium

channel

protein

TREK-1

GO:0006813 Potassium ion

transport

GO:0004878 Complement

component C5a

receptor activity

1 GO:0004987 Kappa-opioid

receptor

activity

1

GO:0007186 G-protein

coupled

receptor protein

signaling

pathway

GO:0001847 Opsonin receptor

activity

2 GO:0005242 Inward rectifier

potassium

channel activity

6

GO:0071805 Potassium ion

transmembrane

transport

GO:0005242 Inward rectifier

potassium

channel activity

3 GO:0001518 Voltage-gated

sodium channel

complex

2

GO:0034765 Regulation of ion

transmembrane

transport

GO:0004987 Kappa-opioid

receptor activity

4 GO:0019866 Inner membrane 3

GO:0005249 Voltage-gated

potassium

channel activity

GO:0001518 Voltage-gated

sodium channel

complex

1 GO:0016020 Membrane 4

GO:0015271 Outward rectifier

potassium

channel activity

GO:0017071 Intracellular cyclic

nucleotide

activated cation

channel complex

4

GO:0016020 Membrane GO:0019866 Inner membrane 7

GO:0016021 Integral to

membrane

GO:0016020 Membrane 8

GO:0008076 Voltage-gated

potassium

channel complex

11

E1WAA4

Formate

hydrogenlyase

transcriptional

activator

GO:0000160 Two-component

signal

transduction

system

(phosphorelay)

GO:0005488 Binding 3 GO:0005488 Binding 2

GO:0006351 Transcription,

DNA-

dependent

GO:0016462 Pyrophosphatase

activity

9 GO:0016462 Pyrophosphatase

activity

9

GO:0006355 Regulation of

transcription,

DNA-

dependent

GO:0003677 DNA binding 11 GO:0003677 DNA binding 10

GO:0000166 Nucleotide

binding

GO:0003700 Transcription

factor activity

14 GO:0006351 Transcription,

DNA-

dependent

4

GO:0003677 DNA binding GO:0050907 Sensory

transduction of

chemical

stimulus

6

GO:0003700 Sequence-specific

DNA binding

transcription

factor activity

GO:0006351 Transcription,

DNA-dependent

7

GO:0005524 ATP binding

GO:0008134 Transcription

factor binding
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Table 1 continued

UniProt ID GO

Annotations

Definition of the

GO terms

Relevant PFP

predictions

using E-

values [ 1.0

Definition of the

Predicted GO terms

Rank Relevant PFP

predictions

using E-

values [ 10.0

Definition of the

Predicted GO

terms

Rank

GO:0017111 Nucleoside-

triphosphatase

activity

Q8UVE6

Transcription

factor AP2

alpha 1

GO:0001501 Skeletal system

development

GO:0003705 RNA polymerase II

transcription

factor activity,

enhancer binding

6 GO:0008134 Transcription

factor binding

7

GO:0006351 Transcription,

DNA-

dependent

GO:0003677 DNA binding 7 GO:0003700 Transcription

factor activity

8

GO:0006355 Regulation of

transcription,

DNA-

dependent

GO:0003700 Transcription

factor activity

13 GO:0006351 Transcription,

DNA-

dependent

2

GO:0007422 Peripheral

nervous system

development

GO:0008134 Transcription

factor binding

14

GO:0014036 Neural crest cell

fate

specification

GO:0006351 Transcription,

DNA-dependent

3

GO:0030318 Melanocyte

differentiation

GO:0060041 Retina

development in

camera-type

eye

GO:0003700 Sequence-specific

DNA binding

transcription

factor activity

GO:0005634 Nucleus

Q12386

Actin-like

protein ARP8

GO:0006312 Mitotic

recombination

GO:0005488 Binding 1 GO:0003676 Nucleic acid

binding

4

GO:0006338 Chromatin

remodeling

GO:0003676 Nucleic acid

binding

4 GO:0003682 Chromatin

binding

7

GO:0006974 Response to DNA

damage

stimulus

GO:0003682 Chromatin binding 7 GO:0008135 Translation

factor activity,

nucleic acid

binding

13

GO:0006355 Regulation of

transcription,

DNA-

dependent

GO:0003677 DNA binding 12 GO:0003723 RNA binding 16

GO:0003729 mRNA binding GO:0003697 Single-stranded

DNA binding

13 GO:0046034 ATP metabolism 3

GO:0043140 ATP-dependent

30-50 DNA

helicase activity

GO:0003700 Transcription

factor activity

15 GO:0009199 Ribonucleoside

triphosphate

metabolism

9

GO:0005634 Nucleus GO:0006351 Transcription,

DNA-dependent

2 GO:0006351 Transcription,

DNA-

dependent

13

GO:0005856 Cytoskeleton GO:0046034 ATP metabolism 6
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potassium channel activity (GO:0005242) with E-value

cutoffs of both 1.0 and 10.0. Although this prediction does

not exactly match with this protein’s annotation, it is close

in the GO hierarchy to the correct annotation, outward

rectifier potassium channel activity (GO:0015271). Both

terms have a common immediate parent terms, voltage-

gated potassium channel activity (GO:0005249). This

query protein is involved in the G-protein coupled receptor

protein signaling pathway (GO:0007186), for which PFP

using the E-value cutoff of 1.0 and 10.0 has captured more

specialized child terms of GO:0004888 trans membrane

signaling receptor activity and GO:0004930 G-protein

coupled receptor activity (e.g. kappa-opioid receptor

activity, GO: 0004987). Overall in this example, even using

weak sequence hits, which are conventionally discarded in

the homology search, PFP still managed to indicate that

this protein is potassium channel that locate inner mem-

brane (transmembrane).

The second example of formate hydrogenlyase tran-

scriptional activator (Uniprot ID: E1WAA4) is involved in

transcription, DNA-dependent (GO:0006351). This GO

term was predicted by PFP within the top 10 ranks when

using the E-value cutoff of 1.0 and 10.0. Also this protein is

annotated with GO:0017111 nucleoside-triphosphatase

activity, where PFP predicts a less specific parental term,

GO:0016462 pyrophosphatase activity as an annotation.

Similar results can be seen in the last two examples for

Q8UVE6 and Q12386. Using only sequence hits of E-value

above 1.0/10.0, PFP correctly predicted their functional

class, transcription factor. More examples can be found in

the original paper [79].

PFP’s superior performance has been also demonstrated

in the community-wide computational function prediction

assessments. In Automatic Function Prediction Special

Interest Group (AFP-SIG) meeting held at the Intelligent

System in Molecular Biology (ISMB) AFP-SIG 2005

[93] and the function prediction category at the Critical

Assessment of Techniques for Protein Structure Prediction

7 (CASP7) [94], PFP has shown best overall performance

among the participants.

In contrast to PFP whose aim is to increase the sensi-

tivity to enlarge annotation coverage, ESG is intended to

make more precise prediction by iterative database sear-

ches. In the thorough benchmark study [86], ESG was

found to have a higher precision than PFP and the other

existing methods with a comparable sensitivity to PFP.

ESG was found to have more accurate prediction for multi-

domain proteins since the second round of PSI-BLAST

searches are often initiated from different local regions of

the query sequence.

Availability of PFP and ESG

PFP and ESG are available freely for academic users as web

servers at http://kiharalab.org/web/pfp.php and http://kiharalab.

org/web/esg.php. The users can submit sequences and receive

predicted GO terms for the sequences. The stand-alone PFP

program is available upon request.

Conclusion

Many protein structures determined by the structural

genomics projects remain functionally unknown since they

are not homologous to or do not have the global sequence

or structural similarity to characterized proteins. In this

article, we have discussed structure-based methods and

sequence-based methods developed in our group to cope

with such proteins with unknown function. Two structure-

based methods, Pocket-Surfer and Patch-Surfer, detect

similar known binding pockets for pocket regions in a

query protein without using global protein fold similarity.

Two sequence-based methods, PFP and ESG, make use of

weakly similar sequences that are conventionally discarded

in homology based function annotation. Combined together

Table 1 continued

UniProt ID GO

Annotations

Definition of the

GO terms

Relevant PFP

predictions

using E-

values [ 1.0

Definition of the

Predicted GO terms

Rank Relevant PFP

predictions

using E-

values [ 10.0

Definition of the

Predicted GO

terms

Rank

GO:0031011 Ino80 complex GO:0009199 Ribonucleoside

triphosphate

metabolism

9

Function predictions by PFP for four proteins are shown. Annotations from the UniProt database are shown in the first three columns from left.

The next three columns (from the 4th to the 6th column) show prediction by PFP that are derived only from weak sequence hits with an E-value

of 1.0 or larger. Only the predictions relevant to the correct annotations are shown. ‘‘Rank’’ is the rank of the prediction based on the PFP’s

confidence score. Since the predicted GO terms are ranked for each of the three GO categories separately, there are multiple (up to 3) predictions

with the same rank. The last three columns (the 7th–9th column) are predictions by PFP using weak sequence hits with an E-value of 10.0 or

larger
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with experimental methods we hope that computational

methods will make a leading contribution in functional

elucidation of the protein structures.

Acknowledgments This work is supported in part by the National

Institute of General Medical Sciences of the National Institutes of

Health (R01GM075004, R01GM097528), the National Science

Foundation (DMS0800568, EF0850009, IIS0915801) and Showalter

Trust. MC is supported by Bilsland Dissertation Fellowship from

College of Science, Purdue University.

References

1. Chandonia JM, Brenner SE (2006) The impact of structural

genomics: expectations and outcomes. Science 311:347–351

2. Norvell JC, Berg JM (2007) Update on the protein structure

initiative. Structure 15:1519–1522

3. Terwilliger TC, Stuart D, Yokoyama S (2009) Lessons from

structural genomics. Annu Rev Biophys 38:371–383

4. Todd AE, Marsden RL, Thornton JM, Orengo CA (2005) Pro-

gress of structural genomics initiatives: an analysis of solved

target structures. J Mol Biol 348:1235–1260

5. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN,

Weissig H, Shindyalov IN, Bourne PE (2000) The protein data

bank. Nucleic Acids Res 28:235–242

6. Westbrook J, Feng Z, Chen L, Yang H, Berman HM (2003) The

protein data bank and structural genomics. Nucleic Acids Res

31:489–491

7. Ellrott K, Zmasek CM, Weekes D, Sri KS, Bakolitsa C, Godzik

A, Wooley J (2011) TOPSAN: a dynamic web database for

structural genomics. Nucleic Acids Res 39:D494–D496

8. Shin DH, Hou J, Chandonia JM, Das D, Choi IG, Kim R, Kim SH

(2007) Structure-based inference of molecular functions of pro-

teins of unknown function from Berkeley Structural Genomics

Center. J Struct Funct Genomics 8:99–105

9. Teplyakov A, Pullalarevu S, Obmolova G, Doseeva V, Galkin A,

Herzberg O, Dauter M, Dauter Z, Gilliland GL (2004) Crystal

structure of the YffB protein from Pseudomonas aeruginosa

suggests a glutathione-dependent thiol reductase function. BMC

Struct Biol 4:5

10. Teplyakov A, Obmolova G, Sarikaya E, Pullalarevu S, Krajewski

W, Galkin A, Howard AJ, Herzberg O, Gilliland GL (2004)

Crystal structure of the YgfZ protein from Escherichia coli
suggests a folate-dependent regulatory role in one-carbon

metabolism. J Bacteriol 186:7134–7140

11. Li De La Sierra-Gallay I, Collinet B, Graille M, Quevillon-

Cheruel S, Liger D, Minard P, Blondeau K, Henckes G, Aufrere

R, Leulliot N, Zhou CZ, Sorel I, Ferrer JL, Poupon A, Janin J, van

Tilbeurgh H (2004) Crystal structure of the YGR205w protein

from Saccharomyces cerevisiae: close structural resemblance to

E. coli pantothenate kinase. Proteins 54:776–783

12. Graille M, Quevillon-Cheruel S, Leulliot N, Zhou CZ, Gallay

ILD, Jacquamet L, Ferrer JL, Liger D, Poupon A, Janin J,

van Tilbeurgh H (2004) Crystal structure of the YDR533c S. ce-

revisiae protein, a class II member of the Hsp31 family.

Structure 12:839–847

13. Liger D, Graille M, Zhou CZ, Leulliot N, Quevillon-Cheruel S,

Blondeau K, Janin J, van Tilbeurgh T (2004) Crystal structure

and functional characterization of yeast YLR011wp, an enzyme

with NAD(P)H-FMN and ferric iron reductase activities. J Biol

Chem 279:34890–34897

14. Sanishvili R, Yakunin AF, Laskowski RA, Skarina T, Evd-

okimova E, Doherty-Kirby A, Lajoie GA, Thornton JM,

Arrowsmith CH, Savchenko A, Joachimiak A, Edwards AM

(2003) Integrating structure, bioinformatics, and enzymology to

discover function: BioH, a new carboxylesterase from Esche-
richia coli. J Biol Chem 278:26039–26045

15. Kuznetsova E, Proudfoot M, Sanders SA, Reinking J, Savchenko

A, Arrowsmith CH, Edwards AM, Yakunin AF (2005) Enzyme

genomics: application of general enzymatic screens to discover

new enzymes. FEMS Microbiol Rev 29:263–279

16. Fridman E, Pichersky E (2005) Metabolomics, genomics, pro-

teomics, and the identification of enzymes and their substrates

and products. Curr Opin Plant Biol 8:242–248

17. Roberts RJ (2011) COMBREX: COMputational BRidge to

EXperiments. Biochem Soc Trans 39:581–583

18. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990)

Basic local alignment search tool. J Mol Biol 215:403–410

19. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller

W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new

generation of protein database search programs. Nucleic Acids

Res 25:3389–3402

20. Pearson WR, Lipman DJ (1988) Improved tools for biological

sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

21. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE,

Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L,

Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein

families database. Nucleic Acids Res 38:D211–D222

22. Hawkins T, Kihara D (2007) Function prediction of uncharac-

terized proteins. J Bioinform Comput Biol 5:1–30

23. Hawkins T, Chitale M, Kihara D (2008) New paradigm in protein

function prediction for large scale omics analysis. Mol Biosyst

4:223–231

24. Kihara D (2011) Protein function prediction for omics era.

Springer, London

25. Gherardini PF, Helmer-Citterich M (2008) Structure-based

function prediction: approaches and applications. Brief Funct

Genomic Proteomic 7:291–302

26. Martin AC, Orengo CA, Hutchinson EG, Jones S, Karmirantzou

M, Laskowski RA, Mitchell JB, Taroni C, Thornton JM (1998)

Protein folds and functions. Structure 6:875–884

27. Thornton JM, Todd AE, Milburn D, Borkakoti N, Orengo CA

(2000) From structure to function: approaches and limitations.

Nat Struct Biol 7(Suppl):991–994

28. Shindyalov IN, Bourne PE (1998) Protein structure alignment by

incremental combinatorial extension (CE) of the optimal path.

Protein Eng 11:739–747

29. Holm L, Sander C (1993) Protein structure comparison by

alignment of distance matrices. J Mol Biol 233:123–138

30. Orengo CA, Taylor WR (1996) SSAP: sequential structure

alignment program for protein structure comparison. Methods

Enzymol 266:617–635

31. Thompson KE, Wang Y, Madej T, Bryant SH (2009) Improving

protein structure similarity searches using domain boundaries

based on conserved sequence information. BMC Struct Biol 9:33

32. Mizuguchi K, Go N (1995) Comparison of spatial arrangements

of secondary structural elements in proteins. Protein Eng 8:

353–362

33. Kihara D, Sael L, Chikhi R, Esquivel-Rodriguez J (2011)

Molecular surface representation using 3D Zernike descriptors

for protein shape comparison and docking. Curr Protein Pept Sci

12:520–530

34. La D, Esquivel-Rodriguez J, Venkatraman V, Li B, Sael L, Ueng

S, Ahrendt S, Kihara D (2009) 3D-SURFER: software for high-

throughput protein surface comparison and analysis. Bioinfor-

matics 25:2843–2844

35. Sael L, Li B, La D, Fang Y, Ramani K, Rustamov R, Kihara D

(2008) Fast protein tertiary structure retrieval based on global

surface shape similarity. Proteins 72:1259–1273

Structure- and sequence-based function prediction

123



36. Sael L, Kihara D (2009) Protein surface representation and

comparison: new approaches in structural proteomics. In: Chen J,

Lonardi S (eds) Biological data mining. Chapman & Hall/CRC

Press, Boca Raton, pp 89–109

37. Venkatraman V, Sael L, Kihara D (2009) Potential for protein

surface shape analysis using spherical harmonics and 3D Zernike

descriptors. Cell Biochem Biophys 54:23–32

38. Ritchie DW, Graham J (1999) Fast computation, rotation, and

comparison of low resolution spherical harmonic molecular sur-

faces. J Comp Chem 20:383–395

39. Orengo CA, Jones DT, Thornton JM (1994) Protein superfamilies

and domain superfolds. Nature 372:631–634

40. Porter CT, Bartlett GJ, Thornton JM (2004) The catalytic site

atlas: a resource of catalytic sites and residues identified in

enzymes using structural data. Nucleic Acids Res 32:D129–D133

41. Arakaki AK, Zhang Y, Skolnick J (2004) Large-scale assessment

of the utility of low-resolution protein structures for biochemical

function assignment. Bioinformatics 20:1087–1096

42. Artymiuk PJ, Poirrette AR, Grindley HM, Rice DW, Willett P

(1994) A graph-theoretic approach to the identification of three-

dimensional patterns of amino acid side-chains in protein struc-

tures. J Mol Biol 243:327–344

43. Kleywegt GJ (1999) Recognition of spatial motifs in protein

structures. J Mol Biol 285:1887–1897

44. Ferre F, Ausiello G, Zanzoni A, Helmer-Citterich M (2004)

SURFACE: a database of protein surface regions for functional

annotation. Nucleic Acids Res 32:D240–D244

45. Redfern OC, Dessailly BH, Dallman TJ, Sillitoe I, Orengo CA

(2009) FLORA: a novel method to predict protein function from

structure in diverse superfamilies. PLoS Comput Biol 5:e1000485

46. Schmitt S, Kuhn D, Klebe G (2002) A new method to detect

related function among proteins independent of sequence and fold

homology. J Mol Biol 323:387–406

47. Gold ND, Jackson RM (2006) Fold independent structural com-

parisons of protein-ligand binding sites for exploring functional

relationships. J Mol Biol 355:1112–1124

48. Kinoshita K, Nakamura H (2005) Identification of the ligand

binding sites on the molecular surface of proteins. Protein Sci

14:711–718

49. Morris RJ, Najmanovich RJ, Kahraman A, Thornton JM (2005)

Real spherical harmonic expansion coefficients as 3D shape

descriptors for protein binding pocket and ligand comparisons.

Bioinformatics 21:2347–2355

50. Binkowski TA, Adamian L, Liang J (2003) Inferring functional

relationships of proteins from local sequence and spatial surface

patterns. J Mol Biol 332:505–526

51. Binkowski TA, Freeman P, Liang J (2004) pvSOAR: detecting

similar surface patterns of pocket and void surfaces of amino acid

residues on proteins. Nucleic Acids Res 32:W555–W558

52. Binkowski TA, Joachimiak A (2008) Protein functional surfaces:

global shape matching and local spatial alignments of ligand

binding sites. BMC Struct Biol 8:45

53. Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a

server for predicting protein function from 3D structure. Nucleic

Acids Res 33:W89–W93

54. Pal D, Eisenberg D (2005) Inference of protein function from

protein structure. Structure (Camb) 13:121–130

55. Chikhi R, Sael L, Kihara D (2010) Real-time ligand binding

pocket database search using local surface descriptors. Proteins

78:2007–2028

56. Sael L, Kihara D (2011) Binding ligand prediction for proteins

using partial matching of local surface patches. Int J Mol Sci

11:5009–5026

57. Sael L, Kihara D (2012) Detecting local ligand-binding site

similarity in non-homologous proteins by surface patch com-

parison. Proteins (in press)

58. Novotni M, Klein R (2003) 3D Zernike descriptors for content

based shape retrieval. In: ACM symposium on solid and physical

modeling, proceedings of the eighth ACM symposium on solid

modeling and applications pp 216–225

59. Canterakis N (1999) 3D Zernike moments and Zernike affine

invariants for 3D image analysis and recognition. In: Proceedings

of 11th scandinavian conference on image analysis, pp 85–93

60. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001)

Electrostatics of nanosystems: application to microtubules and

the ribosome. Proc Natl Acad Sci USA 98:10037–10041

61. Li B, Turuvekere S, Agrawal M, La D, Ramani K, Kihara D

(2007) Characterization of local geometry of protein surfaces

with the visibility criterion. Proteins 71:670–683

62. Huang B, Schroeder M (2006) LIGSITEcsc: predicting ligand

binding sites using the Connolly surface and degree of conser-

vation. BMC Struct Biol 6:19

63. Demange G, Gale D, Stomayor M (1986) Multi-item auctions.

J Polit Econ 94:863–872

64. Kahraman A, Morris RJ, Laskowski RA, Favia AD, Thornton JM

(2010) On the diversity of physicochemical environments expe-

rienced by identical ligands in binding pockets of unrelated

proteins. Proteins 78:1120–1136

65. Gribskov M, Robinson NL (1996) Use of receiver operating

characteristic (ROC) analysis to evaluate sequence matching.

Comput Chem 20:25–33

66. Sael L, Kihara D (2012) Constructing patch-based ligand-binding

pocket database for predicting function of proteins. BMC Bio-

inform (in press)

67. Wallach I, Lilien R (2009) The protein-small-molecule database,

a non-redundant structural resource for the analysis of protein-

ligand binding. Bioinformatics 25:615–620

68. Bender A, Glen RC (2005) A discussion of measures of enrich-

ment in virtual screening: comparing the information content of

descriptors with increasing levels of sophistication. J Chem Inf

Model 45:1369–1375

69. Venkatraman V, Chakravarthy PR, Kihara D (2009) Application

of 3D Zernike descriptors to shape-based ligand similarity

searching. J Cheminform 1:19

70. Huang SY, Zou X (2010) Advances and challenges in protein-

ligand docking. Int J Mol Sci 11:3016–3034

71. Hulo N, Bairoch A, Bulliard V, Cerutti L, De CE, Langendijk-

Genevaux PS, Pagni M, Sigrist CJ (2006) The PROSITE data-

base. Nucleic Acids Res 34:D227–D230

72. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A,

Binns D, Bradley P, Bork P, Bucher P, Cerutti L, Copley R,

Courcelle E, Das U, Durbin R, Fleischmann W, Gough J, Haft D,

Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lons-

dale D, Lopez R, Letunic I, Madera M, Maslen J, McDowall J,

Mitchell A, Nikolskaya AN, Orchard S, Pagni M, Ponting CP,

Quevillon E, Selengut J, Sigrist CJ, Silventoinen V, Studholme

DJ, Vaughan R, Wu CH (2005) InterPro, progress and status in

2005. Nucleic Acids Res 33:D201–D205

73. Bru C, Courcelle E, Carrere S, Beausse Y, Dalmar S, Kahn D

(2005) The ProDom database of protein domain families: more

emphasis on 3D. Nucleic Acids Res 33:D212–D215

74. Chitale M, Kihara D (2011) Computational protein function
prediction: framework and challenges. In: Kihara D (ed) Protein

function prediction for omis era. Springer, London, pp 1–17

75. John B, Sali A (2004) Detection of homologous proteins by an

intermediate sequence search. Protein Sci 13:54–62

76. Salamov AA, Suwa M, Orengo CA, Swindells MB (1999)

Combining sensitive database searches with multiple intermedi-

ates to detect distant homologues. Protein Eng 12:95–100

77. Park J, Teichmann SA, Hubbard T, Chothia C (1997) Interme-

diate sequences increase the detection of homology between

sequences. J Mol Biol 273:349–354

L. Sael et al.

123



78. Hawkins T, Luban S, Kihara D (2006) Enhanced automated

function prediction using distantly related sequences and con-

textual association by PFP. Protein Sci 15:1550–1556

79. Hawkins T, Chitale M, Luban S, Kihara D (2009) PFP: auto-

mated prediction of gene ontology functional annotations with

confidence scores using protein sequence data. Proteins 74:

566–582

80. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger

R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin

GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP,

Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR,

Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE,

Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D,

Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY,

Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R,

Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn

M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N,

Tonellato P, Jaiswal P, Seigfried T, White R (2004) The Gene

Ontology (GO) database and informatics resource. Nucleic Acids

Res 32:D258–D261

81. Martin DM, Berriman M, Barton GJ (2004) GOtcha: a new

method for prediction of protein function assessed by the anno-

tation of seven genomes. BMC Bioinform 5:178

82. Khan S, Situ G, Decker K, Schmidt CJ (2003) GoFigure: auto-

mated gene ontology annotation. Bioinformatics 19:2484–2485

83. Zehetner G (2003) OntoBlast function: from sequence similarities

directly to potential functional annotations by ontology terms.

Nucleic Acids Res 31:3799–3803

84. Hawkins T, Chitale M, Kihara D (2010) Functional enrichment

analyses and construction of functional similarity networks with

high confidence function prediction by PFP. BMC Bioinform

11:265

85. Si L, Yu D, Kihara D, Yi F (2008) Combining sequence simi-

larity scores and textual information for gene function annotation

in the literature. Inf Retr 11:389–404

86. Chitale M, Hawkins T, Park C, Kihara D (2009) ESG: extended

similarity group method for automated protein function predic-

tion. Bioinformatics 25:1739–1745

87. Wass MN, Sternberg MJ (2008) ConFunc–functional annotation

in the twilight zone. Bioinformatics 24:798–806

88. Engelhardt BE, Jordan MI, Muratore KE, Brenner SE (2005)

Protein molecular function prediction by Bayesian phylogenom-

ics. PLoS Comput Biol 1:e45

89. Krishnamurthy N, Brown D, Sjolander K (2007) FlowerPower:

clustering proteins into domain architecture classes for phyloge-

nomic inference of protein function. BMC Evol Biol 7(Suppl

1):S12

90. Friedberg I, Harder T, Godzik A (2006) JAFA: a protein function

annotation meta-server. Nucleic Acids Res 34:W379–W381

91. Chitale M, Hawkins T, Kihara D (2009) Automated prediction of

protein function from sequence. In: Bujnicki J (ed) Prediction of

protein structure, functions, and interactions. Wiley, London,

pp 63–86

92. Uniprot Consortium (2010) The Universal Protein Resource

(UniProt) in 2010. Nucleic Acids Res 38:D142–D148

93. Friedberg I, Jambon M, Godzik A (2006) New avenues in protein

function prediction. Protein Sci 15:1527–1529

94. Lopez G, Rojas A, Tress M, Valencia A (2007) Assessment of

predictions submitted for the CASP7 function prediction cate-

gory. Proteins 69:165–174

Structure- and sequence-based function prediction

123


	Structure- and sequence-based function prediction for non-homologous proteins
	Abstract
	Introduction
	Approaches for structure-based function prediction
	Pocket-Surfer and Patch-Surfer
	Performance of Pocket-Surfer on benchmark datasets
	Patch-Surfer results on the representative binding pocket database
	Sequence-based function prediction methods that use weakly similar sequences
	The protein function prediction algorithm
	The extended similarity group algorithm
	Function prediction using PFP and ESG
	Availability of PFP and ESG
	Conclusion
	Acknowledgments
	References


