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INTRODUCTION

The three dimensional (3D) structure, especially the surface, plays a

central role in various function of proteins. For example, a group of

atoms in an active site on the 3D surface of the protein that carries out

the catalytic reaction of an enzyme.1 Further, surface residues on an

interface region establish physical contacts to another protein in pro-

tein–protein interactions.2,3 Therefore, classification of the 3D structure

of proteins using an appropriate representation is critical for under-

standing the universe of protein structure, function, and evolution.4

The importance of characterization and comparison of protein 3D

structure is further increasing recently in the context of protein function

prediction,5–7 because a significantly increasing number of structures of

unknown function have been solved in recent years by structural

genomics projects.8–10 Currently, more than 2100 protein structures

classified as ‘‘unknown function’’ have been deposited to the Protein

Data Bank (PDB),11 whose function are not easily assigned by conven-

tional sequence database search methods.12,13 To go beyond sequence

data search methods, using the 3D structure information is a reasonable

and promising strategy because the evolutionary history could be better

traced by using global 3D structures than from sequence alone14,15 and

local structure similarity search methods could be used to identify cata-

lytic residues involved in the same enzymatic function.16–18

Several different representations have been proposed for comparing

protein structures.19,20 The most intuitive way would be to compare

coordinates of corresponding residues (a carbons in the main chain)

or atoms of two proteins. Distance measurement by the root mean

square deviation (RMSD) is appropriate when two proteins have the

same length and have a similar overall main chain orientation.21

When two proteins have different chain lengths, residue correspondence
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ABSTRACT

Characterization and identification of similar

tertiary structure of proteins provides rich in-

formation for investigating function and evolu-

tion. The importance of structure similarity

searches is increasing as structure databases

continue to expand, partly due to the structural

genomics projects. A crucial drawback of con-

ventional protein structure comparison meth-

ods, which compare structures by their main-

chain orientation or the spatial arrangement of

secondary structure, is that a database search

is too slow to be done in real-time. Here we

introduce a global surface shape representation

by three-dimensional (3D) Zernike descriptors,

which represent a protein structure compactly

as a series expansion of 3D functions. With

this simplified representation, the search speed

against a few thousand structures takes less

than a minute. To investigate the agreement

between surface representation defined by 3D

Zernike descriptor and conventional main-

chain based representation, a benchmark was

performed against a protein classification gen-

erated by the combinatorial extension algo-

rithm. Despite the different representation, 3D

Zernike descriptor retrieved proteins of the

same conformation defined by combinatorial

extension in 89.6% of the cases within the top

five closest structures. The real-time protein

structure search by 3D Zernike descriptor will

open up new possibility of large-scale global

and local protein surface shape comparison.
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needs be predetermined to compute RMSD. That can be

done, for example, by combining the RMSD computation

by structure superimposition with the dynamic program-

ming (DP) algorithm22–24 or an iterative use of DP.25

Also, comparing the distance map of proteins can quan-

tify similarity of proteins based on contacts of resi-

dues.26,27 A more coarse protein representation uses

vectors that describe secondary structure segments and

compares spatial arrangements of secondary structures.28

An important point to note is that different protein

structure comparison methods compare different features

of protein structures. Thus distances of protein structures

defined by different methods differ and consequently,

database search results by different methods inevitably

differ. To illustrate this, consider three programs, Combi-

natorial Extension (CE),23 Structure ALignment algo-

rithm (SAL),22 and COmparison of Spatial Arrange-

ments of SECondary structural elements (COSEC).28 CE

and SAL can be categorized in the same class of algo-

rithms because both use DP as the basis of their algo-

rithms. However, their behavior is very different: CE first

identifies similar fragment pairs of a fixed length between

inputs of two protein structures without allowing gaps in

fragments, and then extends the combination of similar

fragment pairs. On the other hand, SAL uses DP itera-

tively, allowing gaps in a structural alignment to find

statistically significant matches in overall corresponding

residues between two proteins. As a result, corresponding

protein pairs judged as similar by CE tend to have frag-

ments of the same secondary structure, whereas protein

pairs found by SAL often have very different correspond-

ing fragments because it allows gaps in them. Now, CE

and COSEC are similar with each other in the sense that

both compare ungapped fragments as the basis of struc-

ture comparison. However, a large difference exists

between them. CE compares fragments of two proteins

in a sequential order by DP, whereas COSEC compares

spatial arrangement of fragments of two proteins without

considering sequential connectivity of fragments. There-

fore, CE is more suitable for finding similarity and dis-

similarity of relatively closely related proteins, whereas

COSEC can find distantly related protein pairs that have

circular permutation or domain insertions,29 which CE

cannot. SAL is powerful in finding overall fold similarity

of proteins that is missed by CE or COSEC. This feature

of SAL is especially useful for finding template structures

for protein structure prediction.22,30 The important

thing is to understand strengths and main purposes of

each structure comparison algorithm, and use appropri-

ate algorithm for questions one wants to ask.

Here, we use another representation of global structure

of proteins that concerns the surface shape of proteins. A

surface representation does not consider either of indi-

vidual residue/atom positions or arrangement of second-

ary structure segments.31 The surface of a protein has

been represented in several ways, including tessella-

tion,32,33 a-shape,34 and spherical harmonics.35 In this

study, we introduce for the first time the 3D Zernike

descriptor36 as a representation of the protein surface

shape, which is based on a series expansion of a given

3D function.

The reason why we use the 3D Zernike descriptor is

because it has several strong advantages. First, compared

with conventional methods, it allows fast retrieval of pro-

tein structures. The current major structure databases,

including PDB, CATH,37 and SCOP38 only allow key-

word search and browsing of precomputed classification.

The Distance matrix ALIgnment (DALI) server,39 Vector

Alignment Search Tool (VAST) search at National Center

for Biotechnology Information (NCBI),40 and eF-site

database41 allow users to search the database with a

query structure, but a search often takes hours to finish.

Ideally, for a routine use of protein structure compari-

sons against a large number of structures should be done

quickly, similar to that of a Basic Local Alignment Search

Tool (BLAST) search. Second, 3D Zernike descriptors are

rotation invariant, that is, protein structures need not be

aligned for comparison. Related works, such as the multi-

pole method42 proposed for global protein shape com-

parison and an application of spherical harmonics for

binding pocket and ligand comparisons by Morris

et al.,43 need pose normalization because the methods

are not rotation invariant. The multipole method uses a

reference frame that is computed based on the residue C-

a coordinates, and the work by Morris et al. poses a pro-

tein by first, second, and third moments of around the

mean of surface positions. Generally speaking, pose nor-

malization could be problematic44 especially in compari-

son of protein shapes, which are almost globular and

determining the principle axes may not be robust. Third,

the resolution of the description of protein structures can

be easily and naturally adjusted by changing the order of

3D Zernike descriptors. For example, the rough global

difference of protein structures reflects the difference of

the first couple of invariants that correspond to lower

orders of the 3D Zernike descriptor. Moreover, other

characteristics of a protein surface, such as electrostatic

potentials, can be naturally incorporated into the descrip-

tion considering an appropriate 3D function, which will

be described elsewhere.

This manuscript is organized as follows: we first

describe our implementation of 3D Zernike descriptor

for protein surface shape retrieval. Then, differences of

the 3D Zernike descriptor and the other projection-based

methods are extensively discussed. Next, we report the

results of our benchmark on the performance in protein

structure search using a large dataset with 2432 proteins.

The overall results showed a good agreement with struc-

ture comparison by the CE program,23 which compares

main chain orientations of proteins, despite the differ-

ence in view of protein shape by the two methods. We

also compared 3D Zernike descriptor with another stand-
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ard protein structure comparison method, DALI,26 and

four other 3D object comparison methods in the com-

puter graphics and engineering domain. Finally, differen-

ces between CE and 3D Zernike are shown, emphasizing

the advantage of 3D Zernike. The effect of shape com-

parison at different resolution is also discussed.

METHODS

Building a surface of a protein

The first step of computing 3D Zernike descriptor of a

protein is to define the protein surface region in 3D

space. To begin with, hetero atoms including water mole-

cules in the PDB file of the target protein are removed.

Then, the MSROLL program in Molecular Surface Pack-

age version 3.9.333 is used to compute the Connolly sur-

face (triangle mesh) of the protein using default parame-

ters. Next, the triangle mesh is placed in a 3D cubic grid

of N3 (N 5 200), compactly fitting a protein to the grid.

Each voxel (a cube defined by the grid) is assigned either

1 or 0; 1 for a surface voxel that locates closer than 1.7

grid interval to any triangle defining the protein surface,

and 0 otherwise. Thus, the thickness of the protein sur-

face is 3.4 grid intervals. The inside of a protein is kept

empty so that 3D Zernike descriptor focuses on captur-

ing the surface shape of a protein.

3D Zernike descriptor

To obtain 3D Zernike descriptors, one expands a given

3D function f(x) into a series in terms of Zernike-Canter-

akis basis36 defined by the collection of functions

Zm
nl ðr; #;uÞ ¼ RnlðrÞYm

l ð#;uÞ ð1Þ

with 2l < m < l, 0 � l � n, and (n 2 l) even. Here

Yl
m(W,u) are spherical harmonics.45 Spherical harmonics

is the angular portion of an orthogonal set of solutions

to Laplace’s equation, which is given by

Ym
l ð#;uÞ ¼ Nm

l P
m
l ðcos#Þeimu ð2Þ

Here Nl
m is a normalization factor

Nm
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

4p
ðl �mÞ!
ðl þmÞ!

s
ð3Þ

And Pl
m is the associated Legendre functions.

Rnl(r) are radial functions defined by Canterakis, con-

structed so that Znl
m(r,W,u) are polynomials when written

in terms of Cartesian coordinates as follows:

The conversion between spherical coordinates and Car-

tesian x is defined as

x ¼ jxjf ¼ rf ¼ rðsin# sinu; sin# cosu; cosuÞT ð4Þ

Then the harmonics polynomials el
m are defined as

eml ðxÞ � rlYm
l ð#;uÞ ¼ rlcml

ix � y

2

8>: 9>;m

zl�m

3
Xl�m

2b c

l¼0

l

l

8>>: 9>>; 1� l

mþ l

8>>: 9>>; � x2 þ y2

4z2

8>>: 9>>;l

ð5Þ

where cl
m are normalization factors:

cml ¼ c�m
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l þ 1Þðl þmÞ!ðl �mÞ!p
l!

ð6Þ

Using the harmonics polynomials el
m, 3D Zernike func-

tions [Eq. (1)] can be rewritten in Cartesian coordinates:

Zm
nl ðxÞ ¼ RnlðrÞYm

l ð#;uÞ ¼
Xk
v¼0

qvkl jxj2vrlYm
l ð#;uÞ

¼
Xk
v¼0

qvkl jxj2veml ðxÞ ð7Þ

where 2k 5 n 2 l and the coefficient qkl
v are determined

as follows to guarantee the orthonormality of the func-

tions within the unit sphere,

qvkl ¼
ð�1Þk
22k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 4k þ 3

3

r

2k

k

8>>: 9>>;ð�1Þv
k

v

8>>: 9>>; 2ðk þ l þ vÞ þ 1

2k

8>>: 9>>;
k þ l þ v

k

8>>: 9>>; ð8Þ

Now 3D Zernike moments of f(x) are defined as the

coefficients of the expansion in this orthonormal basis,

that is, by the formula

Xm
nl ¼

3

4p

Z
jxj�1

f ðxÞZm

nlðxÞdx: ð9Þ

To achieve rotation invariance, the moments are col-

lected into (2l 1 1) dimensional vectors Xnl 5 (Xnl
l ,

Xnl
l21, Xnl

l22, Xnl
l23 , . . . , Xnl

2l) and define the rotationally

invariant 3D Zernike descriptors Fnl as norms of vectors

Xnl. Thus

Fnl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm¼l

m¼�l

ðXm
nlÞ2

vuut ð10Þ

Index n is called the order of the descriptor. The rota-

tional invariance of 3D Zernike descriptors means that

calculating Fnl for a protein and its rotated version would

yield the same result.
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In this work, binary voxelization of a protein structure

is used, that is, function f(x) is defined to be 1 at the

points sufficiently close (within about one voxel size) to

the surface of the protein, and 0 at all other locations.

The order n determines the resolution of the descriptor.

It was shown in a previous study that the order of n 5
20 (i.e., a total of 121 numbers to index each shape) pro-

vides sufficient accuracy.36

Definition of distance used in this study

Now that a protein 3D structure is represented by 121

numbers, a comparison of two protein 3D structures

simply results in a comparison of two series of the 121

numbers. In this study, we used three distance measures

for comparing 3D Zernike descriptor of protein surface

shapes. The first function is the Euclidean distance, dE,

which is the RMSD of corresponding index numbers of

two proteins:

dE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri¼nl
i¼0 ðzAi � zBiÞ2

q
ð11Þ

where ZAi is the ith number of 3D Zernike descriptor of

protein A, n is the order of descriptor, and 0 � l � n,

and (n 2 l) even as described earlier.

The second function is the Manhattan distance, dM,

which is the sum of the difference of each corresponding

index numbers:

dM ¼ Ri¼nl
i¼0 jzAi � zBij ð12Þ

The third distance, dc, is defined as

dC ¼ 1� Correlation Coefficient ðZA;ZBÞ ð13Þ

Thus dc 5 0 when two descriptors correlates perfectly.

3D Zernike descriptor and spherical
harmonic descriptor

In this section, we discuss 3D Zernike descriptors

mainly in comparison with the spherical harmonics

descriptors (SHD),46,47 which is a popular spherical har-

monics-based projection techniques used for general 3D

object comparison. Projection-based techniques have

been used extensively in two-dimensional (2D) image

analysis and pattern recognition.48–52 In particular, 2D

Zernike moments have proved exceptionally useful for

the analysis of 2D shapes arising in many areas ranging

from face recognition,53 cell parts recognition,54 and op-

tical scattering pattern recognition for identifying bacte-

rial colonies.55 Yeh et al.56 applied 2D Zernike moments

to protein 3D structure retrieval by characterizing a

structure with a set of 2D projections from 100 different

directions. Finally, Canterakis was able to extend 2D Zer-

nike polynomials and moments to 3D, introducing 3D

Zernike-Canterakis polynomials.57 Later, rotationally

invariant descriptors based on Zernike-Canterakis

moments were explored for 3D shape retrieval by

Novotni and Klein,36 who reported improved precision-

recall curves at a lower storage cost when compared with

SHD.

For SHD no radial modulation is used; rather, the 3D

space is sampled into concentric spherical shells around

the center of mass. Then, a volume of a target object

within each concentric sphere of a radius r centering at

the center of mass of the object, fr(W,u), is expanded in

the series of spherical harmonics, Yl
m(W,u):

frð#;uÞ ¼
X
l

f lr ð#;uÞ ¼
X
l

Xl

m¼�l

cmr;lY
m
r;lð#;uÞ ð14Þ

Spherical harmonics differs under different orientations,

(W,u). However, since the L2 norm of the function is

rotation invariant, a rotation invariant signature for

fr(W,u) is constructed as the collection of L2 norms of

fr
l(W,u) at each l, that is, {kfr0k,kfr1k,. . .}. Finally, collect-

ing the signature for each radius, r, will give the SHD of

a protein structure. The implementation uses 32 shells,

17 descriptors per shell, making a total of 544 numbers

to represent a shape.

Let us remark that 3D Zernike descriptors genuinely

belong to the 3D realm, while SHD are essentially a com-

bination of 2D descriptors. Indeed, note that SHD meas-

ures similarity of objects by comparing them shell-wise.

There are quite a few practical implications of this fact:

(1) SHD does not capture object coherence in the radial

direction, thereby incorporating less object characteristic

information.36 For example, since the descriptors for

each shell are calculated separately, the shells can be

rotated independently by random angles without chang-

ing the resulting descriptors. (2) The orthonormality of

the Zernike-Canterakis basis results in less information

redundancy. One should note that in SHD, descriptors

coming from adjacent shells are highly correlated, making

them redundant to some extent. Indeed, using 154 3D

Zernike descriptors (max order 21) yields better retrieval

results than using 928 SHDs (32 shells, 29 descriptors

per shell) as tested on the Princeton Shape Benchmark,

which is a database of general 3D objects such as air-

planes and chairs.36,47 (3) SHDs require polar sampling,

which was pointed out to be problematic for the robust-

ness of rotation invariancy.58 Securing robustness of

SHD requires a distance field-based voxelization proce-

dure where voxels are assigned continuous values

between 0 and 1. On the other hand, the Zernike-Canter-

akis basis consists entirely of polynomials in Cartesian

coordinates, thus avoiding polar sampling, and making

possible to treat all voxels in the model on equal footing.

In addition, 3D Zernike descriptors show optimal per-

formance when simple binary voxelization is used.36
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Because sizeable amount of the computational time is

consumed by the voxelization process, this simplicity

results in faster response times for user-search engine

transactions. (4) One can naturally add other protein

surface properties within the 3D Zernike framework. For

example, to add electrostatics, it is enough to calculate

3D Zernike descriptors of f(x) set equal to the electro-

static potential value on the surface, and zero otherwise.

This is not as straightforward with the SHD, because of

the aforementioned robustness problem.

Comparison with the other surface shape-
based structure representation methods

The 3D Zernike descriptor is compared with four

other methods in terms of the performance on retrieving

similar protein structures. The benchmark dataset used is

described in the next section. The all four methods repre-

sent surface shape of objects, namely, the SHD,47,46 the

solid angle histogram (SAH),59,60 the shape distribu-

tion,61 and the eigen value model.60 These methods

have been developed and used for recognition of 3D

shapes in computer graphics and engineering domain.

Below we briefly describe the idea of these methods.

To compute aforementioned SHD of a protein struc-

ture, first the protein structure is voxelized. We used the

SpharmonicKit package (http://www.cs.dartmouth.edu/

�geelong/sphere/) for computing SHD. The Euclidean

distance was used to compare SHDs of two proteins.

The SAH represents a distribution of local concavity

and convexity of a protein structure. To obtain SAH, a

protein is first voxelized. Let Kc,r denote a set of voxels

included in a sphere of a radius of r with the center at a

voxel c. Then, the solid angle value SA(vi, r) at a voxel vi
for a protein volume V is defined as the fraction of the

intersection volume of a sphere Kvi,r with the protein vol-

ume V relative to the volume of the sphere Kvi,r:

SAðvi; rÞ ¼ jKvi ;r \ V j
jKvi ;r j

ð15Þ

Hence, a histogram of SA(vi, r) represents a protein

structure. The SAHs of two proteins are compared by the

L1 norm as suggested in the previous work.60

The shape distribution method describes an object as a

histogram of the length of pairs of points on the surface

of the object. First, a given protein is voxelized and the

distance distribution if computed by randomly sampled

pairs of voxels on the protein surface. We use L2 norm to

compute the distance of voxel pairs and L1 norm to com-

pare the similarity of two shape distributions.

The eigen value model60 represents a given protein as

a set of eigen values. The model first voxelize the protein

into a 3D grid and divides the grid into cells. Then for

each cell, three eigen values of the distribution of the

points (voxels) are computed, resulting in total of 3p3

eigen values. These eigen values are registered in the

according bins of a histogram, which describes the pro-

tein structure. Two histograms are compared by L1 norm.

In a comparative study of performance of earlier

methods on retrieval of engineering parts (e.g., bolts,

wheels),62 it was shown that their performance varies

depending on parts. Therefore, it was our curiosity that

whether these methods originally developed for general

objects and engineering parts can be used for protein

structure search or not.

Benchmark dataset

The benchmark dataset of protein structures consists

of 2432 protein structures classified into 185-fold groups.

These are a subset of structures extracted from a struc-

ture comparison results by the CE program23 (ftp://

ftp.sdsc.edu/pub/sdsc/biology/CE/db/ata_3_8.txt). Note

that the structure representation of CE and 3D Zernike

descriptor is fundamentally different: the former consider

a protein structure as the spatial position of main-chain

residues and the latter represents a protein structure as a

surface shape. The purpose of this benchmark study is to

investigate the extent of similarity between the two meth-

ods. If we observe a significant agreement between the

two methods, which result suggests that 3D Zernike

descriptor can be an effective tool for fast search of pro-

tein structures with a similar main-chain orientation

(i.e., a conventional sense of protein structure similarity,

which also implies evolutionary relationship) not only a

similar surface shape. On the other hand, it is also

expected that interesting cases that two proteins that

share a similar surface shape but different main-chain

orientation can be found. CE is one of the standard pro-

grams for protein main-chain comparison that classifies

proteins solely by geometrical aspect of proteins without

consideration of evolutionary relationship as, for exam-

ple, SCOP database does. Given two protein structures,

CE first identifies eight residue-long fragments of a simi-

lar conformation in the two proteins by comparing

corresponding distances of pair of residues within each

fragment. Then, identified fragment pairs from the two

proteins are combined to find larger structurally similar

regions by comparing corresponding interfragment dis-

tances. DP is used for the calculation, thus fragment

pairs are combined in a sequential order from the N-ter-

minus to the C-terminus. Below describes the procedure

we used to select the benchmark proteins.

The original CE database consists of 50,246 protein

structures classified into 7386-fold groups. Each fold

group consists of a ‘‘representing’’ protein, a set of ‘‘rep-

resented’’ proteins that satisfy several similarity criteria

against the representing protein, and another set of ‘‘sim-

ilar’’ proteins (see the README file of the database for

more technical details). Starting from the CE database,

first, separate fold groups are merged if the structure of
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their ‘‘representing’’ proteins is sufficiently similar, having

a Z-score of 3.8 or higher by CE. The Z-score of 3.8 is

recommended by the authors of the database to filter out

random similarities. Next, the set of ‘‘similar’’ proteins

are eliminated from a fold group. Then, ‘‘represented’’

proteins are eliminated from a fold group if the size is

more than 12.5% different in length from the ‘‘represent-

ing’’ protein, or if the quality of the structure is not

appropriate: structures that lacks coordinates of more

than 10 residues, or which have only coordinates of a
carbons, are removed. Small proteins that have less than

100 residues are also eliminated. In addition, structures

that have coordinates of hydrogen atoms of more than

3% of residues are filtered out, because they significantly

affect surface shape of the protein. Finally, small groups

that only contain three of less ‘‘represented’’ proteins

(and ‘‘representing’’ protein) are removed.

DALI protein structure comparison program

In addition, we also run the DALI algorithm26 against

the CE based benchmark dataset. DALI is another widely

used protein structure comparison algorithm that is

established in 1993. DALI compares two protein struc-

tures in terms of the 2D distance map of the proteins.

First, DALI identifies similar subdistance maps of two

input proteins of a fixed size by comparing correspond-

ing distances between two subdistance maps. This step

captures local regions of the two proteins that have a

similar residue contact pattern. Next, the algorithm com-

bines identified pairs of similar subdistance maps to find

significantly similar structures between the two proteins.

We used the standalone program of the DALI algorithm,

DaliLite,63 which is available for download at http://

www.ebi.ac.uk/DaliLite/.

Benchmark procedure

For each protein, the whole set of proteins are ranked

by a given distance of the 3D Zernike descriptor. For a

given distance threshold value, the sensitivity and the

specificity are averaged within a group, then again aver-

aged among all groups to give a final value in the plots

(see Fig. 3). The sensitivity and the specificity are defined

as follows:

Sensitivity ¼ TP

TPþ FN
ð16Þ

Specificity ¼ TP

TPþ FP
ð17Þ

where TP, true positive, is the number of fold group

members of a query protein retrieved with a distance

closer than the threshold; FN, false negative, is the num-

ber of the fold group members whose distance to a query

protein is larger than the threshold hence missed in the

search; FP, false positive, is the number of proteins that

are not included in the fold group with the query protein

but incorrectly retrieved in the search. Thus, the denomi-

nator in Eq. (16) is the total number of all members of

the fold group. The denominator in Eq. (17) is the total

number of proteins retrieved above the threshold.

RESULTS

Examples of 3D Zernike descriptor

Figure 1 shows examples of 3D Zernike descriptor of

two proteins, triosephosphate isomerase (PDB code:

7tim, A chain) and interleukin-4 receptor a-chain
(1iarB). Globally, 7timA has more or less a round-shaped

surface and 1iarB is an L-shaped structure [Fig. 1(A)].

This apparent difference of their global surface shape is

reflected by distinctive 3D Zernike descriptors shown in

Figure 1(B). The difference in the overall shape tends to

appear in the first couple of orders of the descriptor,

Figure 1
3D Zernike descriptor of two example proteins. A, The global surface shape of

the two proteins; 7timA (left) and 1iarB (right). B, 3D Zernike descriptor of the

two proteins. Circles, 7timA; and triangles, 1iarB.
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resulting in a relatively large Euclidean distance of 38.84,

and correlation coefficient-based distance of 0.656.

Rotation invariance

As described earlier and in Method section, the 3D

Zernike descriptor is mathematically most noteworthy

rotationally invariant. This is one of the largest advan-

tages of 3D Zernike descriptor. However, in practice the

descriptor of rotated protein structures are not exactly

identical. This error is caused possibly when the protein

surface shape is discretized into voxels. We found that in

computing all the distance measures, that is, Euclidean

[Eq. (11)], Manhattan [Eq. (12)], and the correlation

coefficient-based [Eq. (13)], normalizing each number in

a 3D Zernike descriptor by the sum of the 121 numbers

of the descriptor reduces the error the best among tested

methods. Figure 2 shows an example of the variance of

3D Zernike descriptor upon rotation. Here, the two pro-

teins used in Figure 1 are rotated to all the possible posi-

tions, and Euclidean and the correlation coefficient-based

distance from the original position are computed. We

used these two distances because they were the top two

performing functions in our protein shape search bench-

mark (see the next section). As for Euclidean distance

[Fig. 2(A)], approximately 90% of the rotated structures

stay within the distance of 10. In the case of the correla-

tion coefficient-based distance [Fig. 2(B)], approximately

90% of the rotated structures of the two proteins have

less than a distance of 0.03. From this experiment, we

can draw a threshold of the significance of the distance,

or in the other words, determine an ‘‘invisible’’ range of

the 3D Zernike descriptor. For example, if two proteins

have an Euclidean distance of less than 10, these proteins

can be considered significantly similar, or more precisely,

indistinguishable from the case where the two proteins

are identical but placed in a different orientation.

To improve the rotation invariance of the descriptor,

we have tried different thickness of the surface represen-

tation, and also a continuous value assignment between 0

and 1 to surface voxels rather than the binary voxeliza-

tion, but did not observe differences in the performance.

Structure retrieval by three
different methods

One of the most interesting applications of 3D Zernike

descriptor is fast structure retrieval. In this experiment,

we used a database derived from the CE algorithm23 to

define the structure similarity. It is important to note

that the structure similarity depends on how structures

are represented and compared.19,64 CE uses combination

of similar main chain fragments to compute the similar-

ity of two protein structures. On the other hand, 3D

Zernike descriptor compares surface shape and DALI

compares the distance maps of two proteins.

Let us first compare the CE benchmark dataset with

the SCOP protein classification database38 to understand

the nature of protein structure classification. The unique

feature of SCOP is that evolutionary relationship of pro-

teins is also taken into account by manual curation to-

gether with protein structure similarity. Thus SCOP has

been serving as an indispensable resource for elucidat-

ing relationships of protein structure and function.

Figure 2
Variance of 3D Zernike descriptor upon rotation of proteins. All the possible rotated positions of two protein structures, 7timA and 1iarB, in three orthogonal directions

with a step size of 308 are computed. Histograms of distances of 3D Zernike descriptor between each of the rotated structures and the original one are shown. A, The

Euclidean distance is used. Filled (empty) circles, the frequency (the cumulative frequency) of Euclidean distances of 7timA are plotted. Filled (empty) triangles, the

frequency (the cumulative frequency) of Euclidean distances of 1iarB are plotted. B, The correlation coefficient based distance is used. The frequency and the cumulative

frequency of distances of 7timA and 1iarB are shown by solid line, dotted line, dashed line, dash-dot-dot line, respectively.
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In Table I(A), the 185-fold groups in the CE benchmark

dataset are compared with the superfamilies defined in

SCOP. The number of CE-fold groups that overlap with

a SCOP superfamily by a certain fraction is counted.

When a CE-fold group overlaps with several SCOP

superfamilies, the SCOP superfamily that gives the largest

overlap is counted. The number of SCOP superfamilies

that correspond to the CE benchmark dataset is 150,

which is smaller than the number of the CE-fold groups.

It is found that only 75.1% of the CE-fold groups corre-

spond to one SCOP superfamily. Table I(B) shows that

82.2% of the CE-fold groups correspond to one SCOP

fold. The overlap with SCOP folds looks larger than

SCOP superfamilies, because the average size of SCOP

fold is larger, thus it is more frequent that multiple CE-

fold groups correspond to a SCOP fold. The number of

SCOP folds that correspond to the CE benchmark is 117.

These results illustrate that even the widely used protein

structure comparison method, CE, does not have perfect

correspondence with a well-established protein structure

classification database, SCOP. Especially, this implies that

CE should be used with caution if the purpose of using

CE is to investigate biological function of proteins, because

only 75.1% of the CE groups agree with SCOP superfami-

lies. A recent work by Sierk and Pearson65 provides a

further benchmark for protein structure comparison

methods. Therefore, the aim of the structure retrieval per-

formed in this study using 3D Zernike descriptor and

DALI on the CE benchmark dataset was to understand the

similarity and dissimilarity of the three methods, not eval-

uating ‘‘accuracy’’ of a particular method.

Figure 3 shows the sensitivity and specificity plot of

the benchmark performance on a dataset of 2432 pro-

teins. Results of the 3D Zernike descriptor with and

without prescreening by the length of the proteins are

also shown. When the prescreening is used, a protein in

the dataset is compared with a query protein only when

its length is in the range of 57%–175% of that of the

query protein. The three different distance measures,

namely, Euclidian, Manhattan, and the correlation coeffi-

cient-based [Eqs. (11)–(13)] are compared. First, regard-

less of the prescreening, the results are far better than

random. Second, among the three distance measures, the

performance of Manhattan distance is somewhat worse

than the other two distance measures, but all three dis-

tance measures essentially showed similar performance.

Third, it is shown that the prescreening is effective in

improving the search performance. This is because the

scale is normalized so that a structure fits in a unit

sphere when computing 3D Zernike descriptor, hence the

size information is lost.36

Table II summarizes the search results of 3D Zernike

descriptor with the length-based prescreening is used.

More than 89.0% of proteins retrieved another protein

in the same CE-fold group within the top five closest

Table I
Comparison Between the CE Based Benchmark Dataset and the SCOP Database

Overlapa The number of CE groups (%)b

(A) Comparison with the superfamily classification by SCOP
0–0.1 1 (0.5)
0.1–0.2 0
0.2–0.3 0
0.3–0.4 1 (0.5)
0.4–0.5 5 (2.7)
0.5–0.6 15 (8.1)
0.6–0.7 5 (2.7)
0.7–0.8 7 (3.8)
0.8–0.9 11 (5.9)
0.9–1.0 2 (1.1)
1.0 139 (75.1)
(B) Comparison with the fold classification by SCOP
0–0.1 1 (0.5)
0.1–0.2 0
0.2–0.3 0
0.3–0.4 0
0.4–0.5 1 (0.5)
0.5–0.6 10 (5.4)
0.6–0.7 4 (2.2)
0.7–0.8 8 (4.3)
0.8–0.9 8 (4.3)
0.9–1.0 2 (1.1)
1.0 152 (82.2)

aThe fraction of members of a fold group in the CE-based benchmark dataset

that overlap with a superfamily in SCOP. When a CE-fold group corresponds to

multiple SCOP superfamilies, a SCOP superfamily that gives the largest overlap

with the CE fold group is used to compute the fraction.
bThe percentage among the 185 CE-fold groups.

Figure 3
The sensitivity and the specificity of the benchmark dataset are plotted using

three distance definitions of 3D Zernike descriptor. The Euclidean (black circles/

upward triangles), the Manhattan (gray circles/dark gray squares), and the

correlation coefficient-based distance (downward triangles/light gray squares)

with and without prescreening by the sequence length. When the prescreening is

used, a protein in the dataset is compared with a query only when its length is

in the range of 57%–175% of that of the query protein. For comparison, results

of a random retrieval are also plotted (black diamonds).
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structures. Those successful proteins are not biased to

specific types of protein folds, because the successful pro-

teins are distributed among approximately 98% of the

fold groups (Top 5, Group 1). When Top 10 hits are con-

sidered, 93.1% of the proteins successfully retrieved its

CE-fold group member by using the Euclidean or the

correlation coefficient-based distance. The search was

successful for at least one protein in almost all the fold

groups (99.5% by using the Euclidean distance) consider-

ing Top 10 hits. On the other hand, approximately half

of the fold groups contain some members that could not

retrieve its fold group member within Top 10 (Top 10,

Groups All). These are protein structures that are judged

to be similar by the main-chain orientation but not by

the surface shape. Below in Figure 5, we show examples

of these cases.

The structure retrieval results by DaliLite are also

shown in Table II. Interestingly, only 28.6% of proteins

retrieved another protein in the same CE-fold group

within Top 5 by using DaliLite. Actually, the Top 5 and

Top 10 results by DaliLite are only slightly better than

the random retrieval.

To conclude, overall 3D Zernike descriptor showed a

strong agreement in the protein structure retrieval with

CE despite its completely different representation of pro-

tein structures. 3D Zernike descriptor agrees with CE

much more than DALI (i.e., the DaliLite program) does

with CE. The superiority of the 3D Zernike descriptor

will be clearer when its performance is compared with

the other shape comparison methods in Figure 4.
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Figure 4
The performance of the 3D Zernike descriptor with the correlation coefficient-

based distance (black solid circles) was compared with four other existing shape

descriptors, the spherical harmonics descriptor (gray circles), the shape

distribution histogram (black triangles), the solid angle histogram (gray

triangles), and the eigen value model (black squares). See text for details of

these methods. For comparison, the random retrieval is also added (gray

squares).
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Next, the 3D Zernike descriptor using the correlation

coefficient-based distance was compared with four exist-

ing shape comparison methods, namely, the SHD, the

shape distribution histogram, the SAH, and the eigen

value model (see Fig. 4). To our surprise, all these four

methods’ performance was no better than the random re-

trieval. This may be due to the protein surface shape

being more or less globular, hence all the proteins in the

benchmark dataset looked almost the same to the four

shape comparison methods developed in computer

graphics and engineering domain. The strikingly poor

performance of the four methods in Figure 4 reminds us

that these methods are originally designed to differentiate

general objects, for example, airplanes from cars, trees

from chairs, or steering wheels from car doors. In con-

trast, Figure 4 clearly highlights the appropriateness of

3D Zernike descriptor’s utility in the protein shape

search, which was revealed to be challenging for conven-

tional shape retrieval methods developed in computer

graphics and engineering domain.

Figure 5 illustrates difference between CE and 3D Zer-

nike descriptor. Figure 5(A,B) are protein structure pairs

that are identified to be significantly similar by CE, but

not by 3D Zernike. They are evolutionary closely related

and thus classified into the same family in CATH and

SCOP. In these two examples, a small portion of the sec-

ondary structure elements of the protein is flipped out

(figure on the right) from the mass of the protein, result-

ing in the change of the surface shape. Figure 5(C,D) are

opposite examples. Figure 5(C) is a vivid example of two

proteins that have a very similar surface shape but with

completely different secondary structure elements, where

the left structure is a b class protein and the right struc-

ture is an a class protein. Figure 5(D) is a protein pair

with a different topology (in CATH) forming a very sim-

ilar surface shape.

Taking advantage of the 3D Zernike descriptor’s ability

to find proteins with similar overall protein surface

shape, functionally related proteins can be retrieved

beyond sequence similarity and significant backbone

Figure 5
Examples of protein pairs of the same main chain orientation but with a different surface shape (A, B), and pairs with a similar surface shape but with a different main

chain orientation (C, D) are shown. Structural comparisons are performed by CE and 3D Zernike. The comparison between A, 1dz3A (response regulator SPO0A) and

1mb0A (response regulator DIVK). CE computes: RMSD 5 1.6 Å, Z-score 5 5.0, aligned/gap positions 5 104/3, Sequence identity (SeqID) 5 26.9%. 3D Zernike shows:

Euclidean distance (dE) 5 51.21, Manhattan distance (dM) 5 438.53, correlation coefficient (dC) 5 0.620. B, 1jznA (galactose-specific C-type lectin) and 1g1qA

(P-selectin lectin). CE: RMSD 5 2.0 Å, Z-score 5 5.9, aligned/gap positions 5 115/12, SeqID 5 23.5%. 3D Zernike: dE 5 52.67, dM 5 431.16, dC 5 0.602. In contrast,

C and D demonstrate two instances in which 3D Zernike detect similar global surface shape of proteins with a different overall fold. C, 1barA (fibroblast growth factor)

and 1rro (oncomodulin). CE: RMSD 5 6.7Å, Z-score 5 1.6, aligned/gap positions 5 56/50, SeqID 5 3.6%. 3D Zernike: dE 5 12.66, dM 5 101.85, dC 5 0.031. D,

1rypB (proteasome subunit) and 1gwz (Tyrosine phosphatase). CE: RMSD 5 5.0 Å, Z-score 5 2.3, aligned/gap positions 5 72/70 SeqID 5 9.7%, 3D Zernike:

dE 5 12.73, dM 5 108.89, dC 5 0.041.
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conformation similarity. Figure 6 shows several such

examples. Associated Table III gives detailed data for the

proteins in Figure 6. Figure 6(A) is a pair of DNA topo-

isomerase I from human and Escherichia coli. The charac-

teristic pore of the proteins is to capture DNA double

strands. The sequence identity between the two proteins

is very low, and the CE only aligns 17.3% of the whole

region of the two proteins. In contrast, 3D Zernike

Figure 6
Examples of protein pairs whose surface shapes are judged to be similar by 3D

Zernike descriptor. Detailed data are shown in Table III. A, 1a31 and 1cy0

(from left to right); B, 1tbp and 1t7p; C, 1b3t and 1adv; D, 2nwl and 2bbh; E,

2b2i and 2cfp. Detailed data of these protein pairs are shown in Table III.
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descriptor identifies the overall similar surface shape with

a significant distance (compare the 3D Zernike distances

with the average distance of the top hit in the bench-

mark, the right columns in Table II). Figure 6(B) shows

two DNA binding proteins. Both proteins bind to DNA

with the curved U-shaped region. These two proteins

have different function, but both have the characteristic

surface shape that enables binding to DNA, that is cap-

tured by 3D Zernike descriptor. Figure 6(C) is another

pair of proteins. These two proteins bind to DNA with

their long tail regions. Note that SCOP classifications of

these three pairs are also different from each other. Fig-

ure 6(D) is a pair of subunits of membrane protein com-

plexes. 2nwl is a subunit of glutamate transporter, which

is a pentamer, and 2bbh is a subunit of CorA Mg21
transporter, which is a trimer. In both the cases, the two

long helices penetrate membrane and form the scaffold

of the transporters. The last example, Figure 6(E) is a

pair of transmembrane proteins. In all the cases [Fig.

6(A–E)], the sequence identity between the pair is below

10%, and CE only aligns partial regions of the pair. In

contrast, 3D Zernike descriptor captures overall surface

similarity of each pair that is required to realize their bi-

ological function with significantly close distance.

Search speed by 3D Zernike descriptor

The 3D Zernike descriptor allows rapid real-time

search on the web, because a protein structure is com-

pactly represented by 121 numbers (when the order n 5
20). If a query protein is already transformed into 3D

Zernike descriptor, a search to the current benchmark

dataset takes less than a second on an Intel Pentium 4

3.0 GHz processor with 2 GB of memory (Table IV).

When a custom PDB file is input as the query, the fol-

lowing steps must be performed before database search:

(1) Solvent accessible surface triangulation by Molecular

Surface Package,33 (2) Surface voxelization, and (3)

transformation into 3D Zernike descriptor. Taken to-

gether with the database search, this entire process takes

still less than a minute. Because enlarging the database to

be searched only affect the execution time of the database

search step, a search against the entire PDB (as of August

2007) with 45,000 structures will only take a minute. The

search speed can further be made faster if the database is

prescreened by the length of the query protein. Note that

a pairwise structure comparison by CE takes typically a

couple of seconds. Thus, a database search against PDB

using CE would take more than a day.

Structure database searches using 3D Zernike descrip-

tor can be performed through the web at: http://dragon.

bio.purdue.edu/3d-surfer/. Users can search the bench-

mark dataset with one of the structures in the dataset

(i.e., 3D Zernike descriptor of the protein is precom-

puted) or by uploading a custom PDB file to the server.

Resolution of the descriptors

As described earlier, one of the characteristics of

the 3D Zernike descriptor is that the resolution of the

description of shapes can be altered by changing the

order of 3D Zernike descriptors. In Figure 7, two differ-

ent orders [the index n in Eqs. (7), (9), (10)], 5 and 20,

are used to compute similarity (Euclidean distance) of

the 16 proteins selected from different CE-fold groups.

Altering the order of descriptors changes the distances of

proteins [e.g., the Euclidean distance of 1theB to 1o0eA

is 28.74 in Fig. 7(A), which is 13.36 in Fig 7(B)]. Also,

the relative distance of pairs changes, which is obvious

from the different topology of the two trees [Fig.

7(A,B)]. When the order of five is used [Fig. 7(A)], an

emphasis is given to describe overall shapes, such as

spherical, cylinder like, or tadpole-like shapes. With the

order of 20, clusters made by using the order of five are

further decomposed [Fig. 7(B)]. To highlight the decom-

position of clusters between the two trees, clusters of

proteins within the Z-value of the Euclidean distance of

0.35 are shaded by the same color. The Z-score of the

Euclidean distance using the order of 20 and 5 is com-

puted using the average and the standard deviation of

the distribution of distances of protein pairs in the CE

benchmark dataset. Reducing resolution will also contrib-

ute in the search speed, because the descriptor becomes

more compact. 121 numbers are used in a descriptor

when the order n is set to 20, and it is decreased to 12

when the order is set to 5.

DISCUSSION

Here, we have introduced 3D Zernike descriptor as a

novel computationally efficient method for searching

protein tertiary structures. Unlike the other existing

methods for structure comparison and representation,

the 3D Zernike descriptor allows an extremely rapid

database search, which opens up the possibility for a real

time protein tertiary structure search on the internet.

The search speed can be further increased by prescreen-

ing proteins by their length and/or by multi-resolution

search using different orders of the descriptor. A search

Table IV
Execution Time (in s)

Grid sizea 643 (voxels) 2003 (voxels)

Surface triangulationb 21 21
Surface voxelization 1 3
3D Zernike descriptor transformation 1 16
Database searchc 0.43 0.46

Total 24 (s) 41 (s)

aThe number of voxels where a protein structure is placed.
bMSROLL program in Molecular Surface Package (ver. 3.9.3) is used.
cThe benchmark dataset of 2432 proteins used in the current study is searched.
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against the benchmark dataset of 2432 proteins used in

this work took only 0.46 s. This indicates by a simple

computation that a search against the current entire PDB

database with 45,000 proteins would take 18.5 s. A pre-

eminent mathematical property of 3D Zernike descriptor

is that it is rotation invariant. This is a significant

advantage over spherical harmonics and the multipole

representation42 that need to pose structures on a refer-

ence frame for comparison.

Because 3D Zernike descriptor concerns surface shape

of proteins but not main chain orientation, in principle

proteins found to be similar by 3D Zernike descriptor

does not necessarily have evolutionary relationship, as

illustrated in Figure 5. However, our benchmark results

show that in majority of the cases 3D Zernike descriptor

retrieves protein structures of the same fold (Table II),

thus demonstrates its utility in regular protein global

structure database search. In a practical implementation

of a tool for a real-time protein structure search, 3D Zer-

nike descriptor could be used as a rapid primary filter,

followed by an option to use a conventional structure

comparison method, such as CE, to compute main-chain

similarity between a query protein against retrieved top

10–20 structures.

Moreover, surface shape representation made possible

by 3D Zernike descriptors has numerous intriguing

applications. A possible application is 3D shape matching

for images by electron microscopy or electron tomogra-

phy. Currently, we are developing local protein surface

shape comparison and search algorithms for structure-

based function annotation.67 It would also be interesting

to analyze surfaces of proteins or biological molecules

with a similar function but different main-chain or mo-

lecular structure, such as binding sites of DNA-binding

proteins, or proteins that display structural mimicry.68

Biology has entered an informatics era when efficient

reuse of knowledge from existing databases is crucial. In

biological sequence comparison, BLAST and FASTA have

enabled fast database search more than a decade ago,

which revolutionized biological research. In contrast,

handling of protein 3D structures is still in the realm of

pairwise comparison, by which a 3D structure database

search may still take hours. That would certainly render

3D structure search impractical and hinder the develop-

ment of novel tools-/applications-based fast structure

search. We believe that the fast real-time 3D structure

search enabled by 3D Zernike descriptors, so to speak,

3D-BLAST, will lead us to a paradigm shift in research

concerning protein tertiary structure.
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